Rachid Boumahdi and Jesse Larone

Abstract. Let P be a polynomial with integral coefficients. Shapiro showed that if the values of P at infinitely many blocks of consecutive integers are of the form $Q(m)$, where Q is a polynomial with integral coefficients, then $P(x) = Q(R(x))$ for some polynomial R. In this paper, we show that if the values of P at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form m^q where q is an integer greater than 1, then $P(x) = (R(x))^q$ for some polynomial $R(x)$.

1. Introduction

Several authors have studied the integer solutions of the equation

$$y^m = P(x)$$

where $P(x)$ is a polynomial with rational coefficients, and $m \geq 2$ is an integer. If P is an irreducible polynomial of degree at least 3 with integer coefficients, then the above equation is called a hyperelliptic equation if $m = 2$ and a superelliptic equation otherwise.

In 1969, Baker [1] gave an upper bound on the size of integer solutions of the hyperelliptic equation when $P(x) \in \mathbb{Z}[x]$ has at least three simple zeros, and for the superelliptic equation when $P(x) \in \mathbb{Z}[x]$ has at least two simple zeros.

Using a refinement of Baker’s estimates and a criterion of Cassels concerning the shape of a potential integer solution to $x^p - y^q = 1$, Tijdeman [11] proved in 1976 that Catalan’s equation $x^p - y^q = 1$ has only finitely many solutions in integers $p > 1$, $q > 1$, $x > 1$, $y > 1$.

Suppose that $y^m - P(x)$ is irreducible in $\mathbb{Q}[x,y]$ where P is monic and $\gcd(m, \deg P) > 1$. Under these conditions, Masser [6] considered the equation $y^m = P(x)$ in the particular case $m = 2$ and $\deg P = 4$. In particular, setting $P(x) = x^4 + ax^3 + bx^2 + cx + d$ where $P(x)$ is not a perfect square, it was shown that for $H \geq 1$ and $X(H)$ defined as the maximum of $|x|$ taken over all integer solutions of all equations $y^2 = P(x)$ with $\max\{|a|, |b|, |c|, |d|\} \leq H$, there are absolute constants $k > 0$ and K such that $kH^3 \leq X(H) \leq KH^3$. Walsh [13] later
obtained an effective bound on the integer solutions for the general case. Poulakis [7] described an elementary method for computing the solutions of the equation $y^2 = P(x)$, where P is a monic quartic polynomial which is not a perfect square. Later, Szalay [10] established a generalization for the equation $y^q = P(x)$, where P is a monic polynomial and q divides $\deg P$.

Suppose that $\alpha_1, \alpha_2, \ldots, \alpha_r$ are the roots of $P(x)$ with respective multiplicities e_1, e_2, \ldots, e_r. Given an integer $m \geq 3$, we define, for each $i = 1, \ldots, r$,

$$m_i = \frac{m}{(e_i, m)} \in \mathbb{N}.$$

It has been shown by LeVeque [5] that the superelliptic equation $y^m = P(x)$ can have infinitely many solutions in \mathbb{Q} only if (m_1, m_2, \ldots, m_r) is a permutation of either $(2, 2, 1, \ldots, 1)$ or $(t, 1, 1, \ldots, 1)$ with $t \geq 1$. In 1995, Voutier [12] gave improved bounds for the size of solutions (x_0, y_0) to the superelliptic equation with $x_0 \in \mathbb{Z}$ and $y_0 \in \mathbb{Q}$ under the conditions of LeVeque.

Given a polynomial $P(x) \in \mathbb{Z}[x]$ and an integer $q \geq 2$, it is then natural to ask when the equation

$$y^q - P(x) = 0$$

will have infinitely many solutions (x_0, y_0) with $x_0 \in \mathbb{Z}$ and $y_0 \in \mathbb{Q}$. It is clear that this will immediately be the case when $P(x) = (R(x))^q$ for some polynomial $R(x) \in \mathbb{Q}[x]$. Indeed, this serves as our motivation.

In 1913, Grösch solved a problem proposed by Jentzsch [4], showing that if a polynomial $P(x)$ with integral coefficients is a square of an integer for all integral values of x, then $P(x)$ is the square of a polynomial with integral coefficients. Kojima [4], Fuchs [2], and Shapiro [9] later proved more general results. In particular, Shapiro proved that if $P(x)$ and $Q(x)$ are polynomials of degrees p and q respectively, which are integer-valued at the integers, such that $P(n)$ is of the form $Q(m)$ for infinitely many blocks of consecutive integers of length at least $p/q + 2$, then there is a polynomial $R(x)$ such that $P(x) = Q(R(x))$.

Recall that the height of a polynomial

$$P(x) = a_p x^p + a_{p-1} x^{p-1} + \cdots + a_1 x + a_0 \in \mathbb{C}[x]$$

is defined by

$$H(P) = \max_{i=0, \ldots, p} |a_i|$$

where $|a_i|$ denotes the modulus of $a_i \in \mathbb{C}$ for each $i = 0, \ldots, p$. We will prove the following result:

Theorem 1. Let $P(x) = a_p x^p + a_{p-1} x^{p-1} + \cdots + a_0$ be a polynomial with integral coefficients where $a_p > 0$, and let $q \geq 2$ be an integer that divides p. Suppose that there exist integers m_i, $i = 0, 1, \ldots, p/q + 1$, such that $P(n_0 + i) = m_i^q$ for some consecutive integers $n_0, n_0 + 1, \ldots, n_0 + p/q + 1$ where

$$n_0 > 1 + (p/q + 1)! pq^{p/q+1} H(P)^{p/q+2} \prod_{j=2}^{p/q+2} (jp - j + 1)^2.$$
Set $M := \sum_{i=0}^{p/q+1} \binom{p/q+1}{i} m_{p/q+1-i}$. If there exist at least M more blocks of such consecutive integers n_k+i, $i = 0, \ldots, p/q+1$, such that $n_k > n_{k-1} + p/q+1$ for each $k = 1, \ldots, M$ and $P(n_k+i) = m_{k,i}$ for all $k = 1, \ldots, M$ and $i = 0, \ldots, p/q+1$ for some integers $m_{k,i}$, then there exists a polynomial $R(x)$ such that $P(x) = (R(x))^q$.

2. Preliminaries

Let $P(x)$ and $Q(x)$ be non-zero polynomials with integral coefficients of degrees p and q respectively. The following properties are easily verified:

(i) $H(P) \geq 1$

(ii) $H(P') \leq pH(P)$

(iii) $H(P + Q) \leq H(P) + H(Q)$

(iv) $H(PQ) \leq (1 + p + q)H(P)H(Q)$

The first and second properties are trivial, while the third follows immediately from the triangle inequality. The last property follows by noting that the coefficient of x^k in the product of $a_p x^p + a_{p-1} x^{p-1} + \cdots + a_0$ and $b_q x^q + b_{q-1} x^{q-1} + \cdots + b_0$ is given by $\sum_{i+j=k} a_ib_j$, where the number of summands is at most $[(p+q)/2]+1 \leq 1+p+q$.

We recall a result which can be found in Rolle [3].

Lemma 1. Let $f(x) \in \mathbb{R}[x]$ be a monic polynomial. If $t \geq 1 + H(f)$, then $f(t) > 0$.

Proof. Let $f(x) = x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$. The result follows from writing $f(t)$ as

$$f(t) = t^{n-1} \left(t + \left(a_{n-1} + \frac{a_{n-2}}{t} + \cdots + \frac{a_0}{t^{n-1}} \right) \right),$$

since from $t > 1$, we deduce that

$$\left| a_{n-1} + \frac{a_{n-2}}{t} + \cdots + \frac{a_0}{t^{n-1}} \right| \leq \sum_{i=0}^{n-1} |a_i|(1/t)^{n-1-i} \leq H(f) \frac{t}{t-1} < t,$$

and we conclude that $t + \left(a_{n-1} + \frac{a_{n-2}}{t} + \cdots + \frac{a_0}{t^{n-1}} \right)$ is positive. \hfill \square

We will also require the following lemma, which is implicit in the proof of the sole lemma in [9].

Lemma 2. Let $f(x)$ be a branch of an algebraic function, real and regular for all $x > x_0$ for some x_0, and satisfying $|f(x)| < Cx^\alpha$ where $C > 0$ and $\alpha > 0$. Then

$$\lim_{x \to \infty} f^{(r+1)}(x) = 0,$$

where r is the least integer greater than or equal to α.

We now establish a bound on the zeros of a particular class of algebraic functions.

Lemma 3. Let $P(x)$ be a polynomial of degree p with integral coefficients, and let $f(x)$ be a branch of the algebraic function defined by the equation $y^q = P(x)$ where q is an integer greater than 1. For any integer $k \geq 2$, $R_k(x) = q^k f(x)^{kq-1} f^{(k)}(x)$ is a polynomial with integral coefficients such that $\deg R_k \leq k(p-1)$ and $H(R_k) \leq (k-1)! pq^{k-1} H(P)^k \prod_{j=2}^{k} (jp - j + 1)^2$.
Proof. Differentiating \(f^q = P \) with respect to \(x \), we obtain \(qf^{q-1}f' = P' \). We have \(\deg P' = p - 1 \) and \(H(P') \leq pH(P) \). We now consider \(R_k = q^k f^{kq-1} f^{(k)} \) and prove the result by induction on \(k \).

For the base case \(k = 2 \), we differentiate \(qf^{q-1}f' = P' \) with respect to \(x \) to obtain

\[
qf^{q-1}f'' + q(q - 1)f^{q-2}f'f' = P''.
\]

Multiplying both sides of this equation by \(qf^q \), we obtain

\[
q^2 f^{2q-1} f'' + (q - 1)(qf^{q-1}f')(qf^{q-1}f') = qf^q P''
\]

so that

\[
q^2 f^{2q-1} f'' + (q - 1)P'P' = qPP'',
\]

so that

\[
R_2 = q^2 f^{2q-1} f'' = qPP'' - (q - 1)P'P'.
\]

We then have

\[
\deg R_2 \leq \max\{p + \deg P'', \deg P' + \deg P'\}
= \max\{p + (p - 1) - 1, p - 1 + p - 1\}
= 2(p - 1),
\]

and

\[
H(R_2) \leq qH(PP'') + (q - 1)H(P'P')
\]

\[
\leq q(1 + p + \deg P'')H(P)H(P'') + q(1 + \deg P' + \deg P')H(P')H(P')
\]

\[
\leq q(1 + p + p - 2)H(P)[\deg P'H(P')] + q(1 + 2p - 2)[pH(P)]^2
\]

\[
\leq q(2p - 1)H(P)(p - 1)[pH(P)] + q(2p - 1)[pH(P)]^2
\]

\[
= pq(2p - 1)H(P)^2[(p - 1) + p]
\]

\[
= pqH(P)^2(2p - 1)^2.
\]

Therefore, the result holds for the base case.

We now assume that the result holds for some integer \(k \geq 2 \). Differentiating \(R_k = q^k f^{kq-1} f^{(k)} \) with respect to \(x \) yields

\[
q^k f^{kq-1} f^{(k+1)} + q^k (kq - 1)f^{kq-2} f' f^{(k)} = R_k'.
\]

Multiplying both sides of the equation by \(qf^q \), we obtain

\[
q^{k+1} f^{[k+1]q-1} f^{(k+1)} + (kq - 1)(qf^{q-1}f')(qf^{kq-1}f^{(k)}) = qf^q R_k'
\]

so that

\[
R_{k+1} = q^{k+1} f^{[k+1]q-1} f^{(k+1)} = qPR_k' - (kq - 1)P'R_k.
\]
By hypothesis, we have \(\deg R_k \leq k(p-1) \). Thus,

\[
\begin{align*}
\deg R_{k+1} & \leq \max \{ p + \deg R'_k, \deg P' + \deg R_k \} \\
& = \max \{ p + \deg R_k - 1, p - 1 + \deg R_k \} \\
& = p - 1 + \deg R_k \\
& \leq p - 1 + k(p-1) \\
& = (k+1)(p-1).
\end{align*}
\]

Thus,

\[
\begin{align*}
\deg R_{k+1} + 1 & \leq \max \{ p + \deg R'_k, \deg P' + \deg R_k \} \\
& = \max \{ p + \deg R_k - 1, p - 1 + \deg R_k \} \\
& = p - 1 + \deg R_k \\
& \leq (k+1)(p-1).
\end{align*}
\]

In addition,

\[
\begin{align*}
H(R_{k+1}) & \leq qH(\mathcal{P}R'_k) + (q-1)H(P'R_k) \\
& \leq kq(1 + p + \deg R'_k)H(P)H(R'_k) \\
& \quad + kq(1 + \deg P' + \deg R_k)H(P')H(R_k) \\
& \leq kq(p + \deg R_k)H(P)[\deg R_k H(R_k)] \\
& \quad + kq(p + \deg R_k)[pH(P)]H(R_k) \\
& = kq(p + \deg R_k)^2H(P)H(R_k).
\end{align*}
\]

By hypothesis, we have \(\deg R_k \leq k(p-1) \) and

\[
H(R_k) \leq (k-1)!pq^{k-1}H(P)^k \prod_{j=2}^{k} (jp - j + 1)^2.
\]

Thus,

\[
H(R_{k+1}) \leq kq(p + k(p-1))^2H(P)(k-1)!pq^{k-1}H(P)^k \prod_{j=2}^{k} (jp - j + 1)^2
\]

\[
= k!pq^k H(P)^{k+1} \prod_{j=2}^{k+1} (jp - j + 1)^2,
\]

proving the result. \(\square \)

Corollary 1. Let \(P(x) \) be a polynomial of degree \(p \) with integral coefficients, and let \(f(x) \) be a branch of the algebraic function defined by the equation \(y^q = P(x) \) where \(q \) is an integer greater than 1. If \(\beta \) is a real zero of \(f^{(k)}(x) \) for any integer \(k \geq 2 \) such that \(\beta > 1 + H(P) \), then \(\beta \leq 1 + (k-1)!pq^{k-1}H(P)^k \prod_{j=2}^{k} (jp - j + 1)^2 \).

Proof. Let \(\beta \) be a zero of \(f^{(k)}(x) \) such that \(\beta > 1 + H(P) \). If \(f(\beta) = 0 \), then \(0 = f(\beta)^q = P(\beta) \) and \(\beta \leq 1 + H(P) \) by Lemma 1. We conclude that \(\beta \) is not a zero of \(f(x) \).

Since \(\beta \) must be a zero of the polynomial \(R_k = q^k f^{kq-1} f^{(k)} \), we conclude from Lemma 1 and Lemma 3 that

\[
\beta \leq 1 + H(R_k) \leq 1 + (k-1)!pq^{k-1}H(P)^k \prod_{j=2}^{k} (jp - j + 1)^2,
\]

as claimed. \(\square \)
Thus, \(f(k) = \frac{1}{k} \) and \(k \) are integers. We now apply the Mean Value Theorem repeatedly to obtain a number \(\phi \) by Lemma 2.

Lemma 4. Let \(k \geq 1 \) be an integer. Then \(\Delta^k f(x) = \sum_{i=0}^{k} \binom{k}{i} (-1)^i f(x + k - i) \).

3. Proof of Theorem

Proof. Let \(x = \phi(y) \) denote the branch of the algebraic function inverse to the polynomial \(y = x^q \), that is, \(\phi(y) = y^{1/q} \). Then \(\phi(y) \) is positive and free of singularities for all \(y \geq 0 \).

Set \(f(x) = \phi(P(x)) \). Then \(f(x) \) is asymptotically \(a_p^{1/q} x^{p/q} \), and \(f(n) = \pm m \) for any \(n \) such that \(P(n) = m^q \).

We show by contradiction that \(f(x) \) is a polynomial. Suppose that \(f(x) \) is not a polynomial. Then \(f^{(p/q+2)}(x) \) is not identically zero. By Corollary 1 any real zero \(\beta \) of \(f^{(p/q+2)}(x) \) satisfying \(\beta > 1 + H(P) \) must also satisfy

\[
\beta \leq 1 + (p/q + 1)!pq^{p/q+1}H(P)^{p/q+2} \prod_{j=2}^{p/q+2} (jp - j + 1)^2.
\]

Thus, \(f^{(p/q+1)}(x) \) is either monotone decreasing or monotone increasing for

\[
x > 1 + (p/q + 1)!pq^{p/q+1}H(P)^{p/q+2} \prod_{j=2}^{p/q+2} (jp - j + 1)^2.
\]

Suppose that \(f^{(p/q+1)}(x) \) is monotone decreasing. It must then be strictly positive for \(x > 1 + (p/q + 1)!pq^{p/q+1}H(P)^{p/q+2} \prod_{j=2}^{p/q+2} (jp - j + 1)^2 \), since \(\lim_{x \to \infty} f^{(p/q+1)}(x) = 0 \) by Lemma 2.

Applying the difference operator \(\Delta \) to \(f(x) \) \(p/q+1 \) times, we find that \(\Delta^{p/q+1} f(n_0) \) is an integer. We now apply the Mean Value Theorem repeatedly to obtain a number \(c_0 \in (n_0, n_0 + p/q + 1) \) such that \(f^{(p/q+1)}(c_0) = \Delta^{p/q+1} f(n_0) \) is an integer.

For each \(k = 1, \ldots, M \), we repeat the above process with each block of consecutive integers \(n_k + i, i = 0, \ldots, p/q + 1 \), to obtain numbers \(c_k \) such that \(c_k \in (n_k, n_k + p/q + 1) \) and \(f^{(p/q+1)}(c_k) = \Delta^{p/q+1} f(n_k) \) are integers.

By Lemma 4, the integer \(f^{(p/q+1)}(c_0) = \Delta^{p/q+1} f(n_0) \) is such that

\[
|f^{(p/q+1)}(c_0)| = \left| \sum_{i=0}^{p/q+1} \binom{p/q+1}{i} (-1)^i f(n_0 + p/q + 1 - i) \right|
\]

\[
\leq \sum_{i=0}^{p/q+1} \binom{p/q+1}{i} |m_{p/q+1-i}|
\]

\[
= M.
\]

Since \(f^{(p/q+1)}(x) \) is monotone decreasing, \(f^{(p/q+1)}(c_k) < f^{(p/q+1)}(c_{k-1}) \) for each \(k = 1, \ldots, M \). Thus \(f^{(p/q+1)}(c_j) \leq M - j \) for \(j = 0, \ldots, M \). This implies that
$f^{(p/q+1)}(c_M) \leq 0$, which contradicts $f^{(p/q+1)}(x)$ being strictly positive at
\[
c_M > c_0 > n_0 > 1 + (p/q + 1)!pq^{p/q+1}H(P)^{p/q+2} \prod_{j=2}^{p/q+2} (jp - j + 1)^2.
\]

Similarly, the case where $f^{(p/q+1)}(x)$ is monotone increasing leads to a contradiction. Therefore, $f(x)$ is a polynomial and $P(x) = f(x)^q$. □

References

[10] Szalay, L., _Superelliptic equations of the form $y^p = x^{kp} + a_{kp-1}x^{kp-1} + \cdots + a_0$_, Bull. Greek Math. Soc. 46 (2002), 23–33.