UNIT-REGULARITY AND REPRESENTABILITY FOR SEMIARTINIAN ∗-REGULAR RINGS

CHRISTIAN HERRMANN

Abstract. We show that any semiartinian ∗-regular ring R is unit-regular; if, in addition, R is subdirectly irreducible then it admits a representation within some inner product space.

1. Introduction

The motivating examples of ∗-regular rings, due to Murray and von Neumann, were the ∗-rings of unbounded operators affiliated with finite von Neumann algebra factors; to be subsumed, later, as ∗-rings of quotients of finite Rickart C^*-algebras. All the latter have been shown to be ∗-regular and unit-regular (Handelman [5]). Representations of these as ∗-rings of endomorphisms of suitable inner product spaces have been obtained first, in the von Neumann case, by Luca Giudici (cf. [7]), in general in joint work with Marina Semenova [9]. The existence of such representations implies direct finiteness [8]. In the present note we show that every semiartinian ∗-regular ring is unit-regular and a subdirect product of representables. This might be a contribution to the question, asked by Handelman (cf. [3, Problem 48]), whether all ∗-regular rings are unit-regular. We rely heavily on the result of Baccella and Spinosa [1] that a semiartinian regular ring is unit-regular provided that all its homomorphic images are directly finite. Also, we rely on the theory of representations of ∗-regular rings developed by Florence Micol [12] (cf. [9, 10]). Thanks are due to the referee for a timely, concise, and helpful report.

2. Preliminaries: Regular and ∗-regular rings

We refer to Berberian [2] and Goodearl [3]. Unless stated otherwise, rings will be associative, with unit 1 as constant. A (von Neumann) regular ring R is such that for each $a \in R$ there is $x \in R$ such that $axa = a$; equivalently, every right (left) principal ideal is generated by an idempotent. The socle $\text{Soc}(R)$ is the sum of all minimal right ideals. A regular ring R is semiartinian if each of its homomorphic images has non-zero socle; that is, R has Loewy length $\xi + 1$ for some ordinal ξ. A ring R is directly finite if $xy = 1$ implies $yx = 1$ for all $x, y \in R$. A ring R is

2020 Mathematics Subject Classification: primary 16E50; secondary 16W10.
Key words and phrases: ∗-regular ring, representable, unit-regular.
Received August 7, 2019, revised November 2019. Editor J. Trlifaj.
DOI: 10.5817/AM2020-1-43
unit-regular if for any \(a \in R \) there is a unit \(u \) of \(R \) such that \(auu = a \). The crucial fact to be used, here, is the following result of Baccella and Spinosa [1].

Theorem 1. A semiartinian regular ring is unit-regular provided all its homomorphic images are directly finite.

A \(*\)-ring is a ring \(R \) endowed with an involution \(r \mapsto r^* \). Such \(R \) is \(*\)-regular if it is regular and \(rr^* = 0 \) only for \(r = 0 \). A projection is an idempotent \(e \) such that \(e = e^* \); we write \(e \in P(I) \) if \(e \in I \). A \(*\)-ring is \(*\)-regular if and only if for any \(a \in R \) there is a projection \(e \) with \(aR = eR \); such \(e \) is unique and obtained as \(aa^+ \) where \(a^+ \) is the pseudo-inverse of \(a \). In particular, for \(*\)-regular \(R \), each ideal \(I \) is a \(*\)-ideal, that is, closed under the involution. Thus, \(R/I \) is a \(*\)-ring with involution \(a + I \mapsto a^* + I \) and a homomorphic image of the \(*\)-ring \(R \). In particular, \(R/I \) is regular; and \(*\)-regular since \(aa^* + I \) is a projection generating \((a + I)(R/I) \).

If \(R \) is a \(*\)-regular ring and \(e \in P(R) \) then the corner \(eRe \) is a \(*\)-regular ring with unit \(e \), operations inherited from \(R \), otherwise. For a \(*\)-regular ring, \(P(R) \) is a modular lattice, with partial order given by \(e \leq f \iff fe = e \), which is isomorphic to the lattice \(L(R) \) of principal right ideals of \(R \) via \(e \mapsto eR \). In particular, \(eRe \) is artinian if and only if \(e \) is contained in the sum of finitely many minimal right ideals.

A \(*\)-ring is subdirectly irreducible if it has a unique minimal ideal, denoted by \(M(R) \). Observe that \(Soc(R) \neq 0 \) implies \(M(R) \subseteq Soc(R) \) since \(Soc(R) \) is an ideal. For the following see Lemma 2 and Theorem 3 in [9].

Fact 2. If \(R \) is a subdirectly irreducible \(*\)-regular ring then \(eRe \) is simple for all \(e \in P(M(R)) \) and \(R \) a homomorphic image of a \(*\)-regular sub-\(*\)-ring of some ultraproduction of the \(eRe \), \(R \in P(M(R)) \).

3. Preliminaries: Representations

We refer to Gross [4] and Sections 1 of [9], 2–4 of [10]. By an inner product space \(V_F \) we will mean a right vector space (also denoted by \(V_F \)) over a division \(*\)-ring \(F \), endowed with a sesqui-linear form \(\langle \cdot, \cdot \rangle \) which is anisotropic (\(\langle v \mid v \rangle = 0 \) only for \(v = 0 \)) and orthosymmetric, that is, \(\langle v \mid w \rangle = 0 \) if and only if \(\langle w \mid v \rangle = 0 \). Let \(\text{End}^*(V_F) \) denote the \(*\)-ring consisting of those endomorphisms \(\varphi \) of the vector space \(V_F \) which have an adjoint \(\varphi^* \) w.r.t. \(\langle \cdot, \cdot \rangle \).

A representation of a \(*\)-ring \(R \) within \(V_F \) is an embedding of \(R \) into \(\text{End}^*(V) \). \(R \) is representable if such exists. The following is well known, cf. [11] Chapter IV.12

Fact 3. Each simple artinian \(*\)-regular ring is representable.

The following two facts are consequences of Propositions 13 and 25 in [9] (cf. Micol [12, Corollary 3.9]) and, respectively, [8 Theorem 3.1] (cf. [6] Theorem 4).

Fact 4. A \(*\)-regular ring is representable provided it is a homomorphic image of a \(*\)-regular sub-\(*\)-ring of an ultraproduct of representable \(*\)-regular rings.

Fact 5. Every representable \(*\)-regular ring is directly finite.
4. Main results

Theorem 6. If \(R \) is a subdirectly irreducible \(-\)regular ring such that \(\text{Soc}(R) \neq 0 \), then \(\text{Soc}(R) = M(R) \), each \(eRe \) with \(e \in P(M(R)) \) is artinian, and \(R \) is representable.

Proof. Consider a minimal right ideal \(aR \). As \(R \) is subdirectly irreducible, \(M(R) \) is contained in the ideal generated by \(a \); that is, for any \(0 \neq e \in P(M(R)) \) one has \(e = \sum_i r_i a s_i \) for suitable \(r_i, s_i \in R, r_i a s_i \neq 0 \). By minimality of \(aR \), one has \(a s_i R = a R \) and \(r_i a s_i R = r_i a R \) is minimal, too. Thus, \(e \in \sum_i r_i a R \) means that \(e Re \) is artinian. By Facts 3, 2, and 4, \(\text{Soc}(e Re) = 0 \), \(e Re \) is semiartinian if and only if so is \(R \).

It remains to show that \(\text{Soc}(R) \subseteq M(R) \). Recall that the congruence lattice of \(L(R) \) is isomorphic to the ideal lattice of \(R \) ([13] Theorem 4.3) with an isomorphism \(\theta \mapsto I \) such that \(a R / 0 \in \theta \) if and only if \(a \in I \). In particular, since \(R \) is subdirectly irreducible so is \(L(R) \). Choose \(e \in M(R) \) with \(e R \) minimal. Then for each minimal \(aR \) one has \(e R / 0 \) in the lattice congruence \(\theta \) generated by \(a R / 0 \). Since both quotients are prime, by modularity this means that they are projective to each other. Thus, \(a R / 0 \) is the ideal generated by \(e \), that is, \(R \) is semiartinian.

Theorem 7. Every semiartinian \(-\)regular ring \(R \) is unit-regular and a subdirect product of representable homomorphic images.

Proof. Consider an ideal \(I \) of \(R \). Then \(I = \bigcap_{x \in X} I_x \) with completely meet irreducible \(I_x \), that is, subdirectly irreducible \(R / I_x \). Since \(R \) is semiartinian one has \(\text{Soc}(R / I_x) \neq 0 \), whence \(R / I_x \) is representable by Fact 6 and directly finite by Theorem 4. Then \(R / I \) is directly finite, too, being a subdirect product of the \(R / I_x \). By Theorem 1 it follows that \(R \) is unit-regular.

5. Examples

It appears that semiartinian \(-\)regular rings form a very special subclass of the class of unit-regular \(-\)regular rings, even within the class of those which are subdirect products of representables. E.g. the \(-\)ring of unbounded operators affiliated to the hyperfinite von Neumann algebra factor is representable, unit-regular, and \(-\)regular with zero socle. On the other hand, due to the following, for every simple artinian \(-\)regular ring \(R \) and any natural number \(n > 0 \) there is a semiartinian \(-\)regular ring having ideal lattice an \(n \)-element chain and \(R \) as a homomorphic image.

Proposition 8. Every representable \(-\)regular ring \(R \) embeds into some subdirectly irreducible representable \(-\)regular ring \(\hat{R} \) such that \(R \cong \hat{R} / M(\hat{R}) \). In particular, \(\hat{R} \) is semiartinian if and only if so is \(R \).

The proof needs some preparation. Call a representation \(\iota : R \to \text{End}^*(V_F) \) large if for all \(a, b \in R \) with \(\text{im} \iota(b) \subseteq \text{im} \iota(a) \) and finite \(\text{dim}(\text{im} \iota(a) / \text{im} \iota(b))_F \) one has \(\text{im} \iota(a) = \text{im} \iota(b) \).

Lemma 9. Any representable \(-\)regular ring admits some large representation.
Proof. Inner product spaces can be considered as 2-sorted structures V_F with sorts V and F. In particular, the class of inner product spaces is closed under formation of ultraproducts. Representations of \ast-rings R can be viewed as R-F-bimodules RF, that is as 3-sorted structures, with R acting faithfully on V. It is easily verified that the class of representations of \ast-rings is closed under ultraproducts cf. [9, Proposition 13].

Now, given a representation η of R in W_F, form an ultrapower ι, that is SV_F', such that $\dim F'$ is infinite (recall that F' is an ultrapower of F). Observe that $\text{End}^\ast(V_F')$ is a sub-\ast-ring of $\text{End}^\ast(V_F)$ and $\dim(U/W)_F$ is infinite for any subspaces $U \supseteq W$ of V_F'. Also, S is an ultrapower of R with canonical embedding $\varepsilon: R \to S$. Thus, $\varepsilon \circ \iota$ is a large representation of R in V_F.

Proof of Proposition [8] In view of Lemma [9] we may assume a large representation ι of R in V_F. Identifying R via ι with its image, we have R a \ast-regular sub-\ast-ring of $\text{End}^\ast(V_F)$. Let I denote the set of all $\varphi \in \text{End}(V_F)$ such that $\dim(\text{im} \varphi)_F$ is finite. According to Micol [12, Proposition 3.12] (cf. Propositions 4.4(i), (iii) and 4.5 in [10]) $R + I$ is a \ast-regular sub-\ast-ring of $\text{End}^\ast(V_F)$, with unique minimal ideal I. By Theorem [6] one has $I = \text{Soc}(R + I)$. Moreover, $R \cap I = \{0\}$ since the representation ι of R in V_F is large. Hence, $R \cong (R + I)/I$. □

References

TUD FB4, Schloßgartenstr. 7, 64289 Darmstadt, Germany
E-mail: herrmann@mathematik.tu-darmstadt.de