Depth and Stanley depth of the edge ideals of the powers of paths and cycles

Zahid Iqbal and Muhammad Ishaq

Abstract

Let k be a positive integer. We compute depth and Stanley depth of the quotient ring of the edge ideal associated to the k^{th} power of a path on n vertices. We show that both depth and Stanley depth have the same values and can be given in terms of k and n. If $n \equiv 0, k + 1, k + 2, \ldots, 2k(\text{mod}(2k + 1))$, then we give values of depth and Stanley depth of the quotient ring of the edge ideal associated to the k^{th} power of a cycle on n vertices and tight bounds otherwise, in terms of n and k. We also compute lower bounds for the Stanley depth of the edge ideals associated to the k^{th} power of a path and a cycle and prove a conjecture of Herzog for these ideals.

1 Introduction

Let K be a field and $S := K[x_1, \ldots, x_n]$ the polynomial ring over K. Let M be a finitely generated \mathbb{Z}^n-graded S-module. A Stanley decomposition of M is a presentation of the K-vector space M as a finite direct sum $\mathcal{D} : M = \bigoplus_{i=1}^{s} v_i K[W_i]$, where $v_i \in M$, $W_i \subseteq \{x_1, \ldots, x_n\}$, and $v_i K[W_i]$ denotes the K-subspace of M, which is generated by all elements $v_i w$, where w is a monomial in $K[W_i]$. The \mathbb{Z}^n-graded K-subspace $v_i K[W_i] \subseteq M$ is called a Stanley space of dimension $|W_i|$, if $v_i K[W_i]$ is a free $K[W_i]$-module, where $|W_i|$ denotes the cardinality of W_i. Define $\text{sdepth}(\mathcal{D}) = \min\{|W_i| : i = 1, \ldots, s\}$.
and sdepth(M) = max{sdepth(D) : D is a Stanley decomposition of M}. The number sdepth(D) is called the Stanley depth of decomposition D and sdepth(M) is called the Stanley depth of M. Stanley conjectured in [24] that sdepth(M) \geq depth(M) for any \mathbb{Z}^n-graded S-module M. This conjecture was disproved by Duval et al. in [8] as was expected due to different nature of these two invariants. However, the relation between Stanley depth and some other invariants has already been established; see [11, 12, 21, 26]. In [11], Herzog, Vladoiu and Zheng proved that the Stanley depth of M can be computed in a finite number of steps, if $M = J/I$, where $I \subset J \subset S$ are monomial ideals. But practically it is too hard to compute Stanley depth by using this method; see for instance, [2, 5, 15, 16]. For computing Stanley depth for some classes of modules we refer the reader to [14, 20, 22, 23]. In this paper we attempt to find values and reasonable bounds for depth and Stanley depth of I and S/I, where I is the edge ideal of a power of a path or a cycle. We also compare the values of sdepth(I) and sdepth(S/I) and give positive answers to the following conjecture of Herzog.

Conjecture 1.1. [9] Let $I \subset S$ be a monomial ideal then sdepth(I) \geq sdepth(S/I).

The above conjecture is proved in some other cases; see [13, 16, 20, 23]. The paper is organized as follows: First two sections are devoted to introduction, definitions, notation, and discussion of some known results. In third section, we compute depth and Stanley depth of $S/I(P^k_n)$, where $I(P^k_n)$ denotes the edge ideal of the k^{th} power of a path P_n on n vertices. Let for $q \in \mathbb{Q}$, $\lceil q \rceil$ denotes the smallest integer greater than or equal to q. Then in Theorems 3.8 and 3.14 we prove that

$$\text{depth}(S/I(P^k_n)) = \text{sdepth}(S/I(P^k_n)) = \lceil \frac{n}{2k+1} \rceil.$$

Let $I(C^k_n)$ be the edge ideal of the k^{th} power of a cycle C_n on n vertices. In fourth section we give some lower bounds for depth and Stanley depth of $S/I(C^k_n)$; see Theorems 4.5 and 4.7. If $n \geq 2k+2$, then by Corollaries 4.6 and 4.8 we prove that if $n \equiv 0, k+1, \ldots, 2k(\text{mod}(2k+1))$ then depth($S/I(C^k_n)$) = sdepth($S/I(C^k_n)$) = $\lceil \frac{n}{2k+1} \rceil$. Otherwise,

$$\lceil \frac{n}{2k+1} \rceil - 1 \leq \text{depth}(S/I(C^k_n)), \text{sdepth}(S/I(C^k_n)) \leq \lceil \frac{n}{2k+1} \rceil.$$

Last section is devoted to Conjecture 1.1 for $I(P^k_n)$ and $I(C^k_n)$. By our Theorem 5.2 we have

$$\text{sdepth}(I(P^k_n)) \geq \lceil \frac{n}{2k+1} \rceil + 1.$$
which shows that $I(P^k_n)$ satisfies Conjecture 1.1. Let $n \geq 2k + 1$. Proposition 5.3 gives a lower bound for $I(C^n_k)/I(P^k_n)$ that is
\[
sdepth(I(C^n_k)/I(P^k_n)) \geq \lceil \frac{n + k + 1}{2k + 1} \rceil.
\]

Corollary 5.5 of this paper proves that $I(C^n_k)$ satisfies Conjecture 1.1.

2 Definitions and notation

Throughout this paper m denotes the unique maximal graded ideal (x_1, \ldots, x_n) of S. We set $S_m := K[x_1, x_2, \ldots, x_n]$, supp($v$) := \{i \in \mathbb{N}: x_i|v\}$ and supp(I) := \{i : x_i|u, \text{ for some } u \in \mathbb{S}(I)\}, where $\mathbb{S}(I)$ denotes the unique minimal set of monomial generators of the monomial ideal I. Let $I \subseteq S$ be an ideal. Then we write I instead of IS. Thus every ideal will be considered an ideal of S unless otherwise stated. Let I and J be monomial ideals of S, then for $I + J$ we write (I, J).

We review some notation and refer the reader to [3] for further details. Let G be a simple graph. For a positive integer k, the kth power of graph G is another graph G^k on the same set of vertices, such that two vertices are adjacent in G^k when their distance in G is at most k. In the whole paper we label the vertices of the graph G by $1, 2, \ldots, n$. We denote the set of vertices of G by $[n] := \{1, 2, \ldots, n\}$ and its edge set by $E(G)$. We assume that all graphs and their powers are simple graphs. We also assume that all graphs have at least two vertices and a non-empty edge set. For a graph G, the edge ideal $I(G)$ associated to G is defined as $I(G) := \langle x_i x_j : \{i, j\} \in E(G) \rangle$. For $n \geq 2$, a graph G is called a path if $E(G) = \{\{i, i + 1\} : i \in [n - 1]\}$. A path on n vertices is denoted by P_n. For $n \geq 3$, a graph G is called a cycle if $E(G) = \{\{i, i + 1\} : i \in [n - 1]\} \cup \{1, n\}$. A cycle on n vertices is denoted by C_n. For $n \geq 2$, the kth power of a path, denoted by P^k_n, is a graph such that for all $1 \leq i < j \leq n$, $\{i, j\} \in E(P^k_n)$ if and only if $0 < j - i \leq k$. If $n \leq k + 1$, then P^k_n is a complete graph on n vertices. If $n \geq k + 2$, then
\[
E(P^k_n) = \bigcup_{i=1}^{n-k-1} \{\{i, i + 1\}, \{i, i + 2\}, \ldots, \{i, i + k\}\} \cup \bigcup_{j=n-k+1}^{n-1} \{\{j, j + 1\}, \{j, j + 2\}, \ldots, \{j, n\}\}.
\]

For $n \geq 3$, the kth power of a cycle, denoted by C^k_n, is a graph such that for all vertices $1 \leq i, j \leq n$, $\{i, j\} \in E(C^k_n)$ if and only if $|j - i| \leq k$ or $|j - i| \geq n - k$. If $n \leq 2k + 1$, then C^k_n is a complete graph on n vertices. If $n \geq 2k + 2$, then
\[
E(C^k_n) = E(P^k_n) \cup \bigcup_{l=1}^{k} \{\{l, l+n-k\}, \{l, l+n-k+1\}, \{l, l+n-k+2\}, \ldots, \{l, n\}\}.
\]
For examples of powers of paths and cycles see Figures 1 and 2.

If \(n \leq k + 1 \), then \(I(P_n^k) \) is a squarefree Veronese ideal of degree 2. If \(n \geq k + 2 \), then

\[
G(I(P_n^k)) = \bigcup_{i=1}^{n-k} \{x_i x_{i+1}, x_i x_{i+2}, \ldots, x_i x_{i+k}\} \cup \bigcup_{j=n-k+1}^{n-1} \{x_j x_{j+1}, x_j x_{j+2}, \ldots, x_j x_n\}.
\]

If \(n \leq 2k + 1 \), then \(I(C_n^k) \) is a squarefree Veronese ideal of degree 2. If \(n \geq 2k + 2 \), then

\[
G(I(C_n^k)) = G(I(P_n^k)) \cup \bigcup_{l=1}^{k} \{x_l x_{l+n-k}, x_l x_{l+n-k+1}, \ldots, x_l x_n\}.
\]

\[\begin{array}{c}
\text{Figure 1: From left to right, } P_{12}^3 \text{ and } P_{12}^4 \text{ respectively.}
\end{array}\]

\[\begin{array}{c}
\text{Figure 2: From left to right, } C_{10}^3 \text{ and } C_{10}^4 \text{ respectively.}
\end{array}\]

Lemma 2.1 ([17, Lemma 3]). If \(n \geq k + 1 \), then \(|G(I(P_n^k))| = nk - \frac{k(k+1)}{2} \).

Rem. 2.2. If \(n \geq 2k + 1 \), then \(|G(I(C_n^k))| = nk \).

Let \(G \) be a graph and \(i \in [n] \), then \(N_G(x_i) := \{x_j : x_i x_j \in G(G)\} \), where \(j \in [n] \setminus \{i\} \). For \(k \geq 2 \), \(0 \leq i \leq k - 1 \) and \(n \geq 2k + 2 \), let \(A_{n-k-1} \).
Lemma 2.4 (Lemma 2.2). Let 0 → $U \rightarrow M \rightarrow N \rightarrow 0$ be an exact sequence of modules over a local ring S, or a Noetherian graded ring with S_0 local, then

1. $\text{depth } M \geq \min\{\text{depth } N, \text{depth } U\}$.
2. $\text{depth } U \geq \min\{\text{depth } M, \text{depth } N + 1\}$.
3. $\text{depth } N \geq \min\{\text{depth } U - 1, \text{depth } M\}$.

Lemma 2.5 (Lemma 2.2). Let 0 → $U \rightarrow V \rightarrow W \rightarrow 0$ be a short exact sequence of \mathbb{Z}^n-graded S-modules. Then

$sdepth(V) \geq \min\{sdepth(U), sdepth(W)\}$.

The above Lemma can also be seen as an immediate consequence of the result of J. Apel [1, Sec.3].
3 Depth and Stanley of cyclic modules associated to the edge ideals of the powers of a path

We start this section with some results. These results are essential for computations of depth and Stanley depth of $S/I(P^k_n)$.

Lemma 3.1. Let $a \geq 2$ be an integer, $\{E_i : 1 \leq i \leq a\}$ and $\{G_i : 0 \leq i \leq a\}$ be some families of \mathbb{Z}^n-graded S-modules such that we have the following short exact sequences:

\[
0 \rightarrow E_1 \rightarrow G_0 \rightarrow G_1 \rightarrow 0 \\
0 \rightarrow E_2 \rightarrow G_1 \rightarrow G_2 \rightarrow 0 \\
\vdots \\
0 \rightarrow E_{a-1} \rightarrow G_{a-2} \rightarrow G_{a-1} \rightarrow 0 \\
0 \rightarrow E_a \rightarrow G_{a-1} \rightarrow G_a \rightarrow 0
\]

and depth($G_a)$ \geq depth(E_a), depth(E_i) \geq depth(E_{i-1}) for all $2 \leq i \leq a$. Then depth(G_0) = depth(E_1).

Proof. By assumption, we have depth($G_a)$ \geq depth(E_a), applying Depth Lemma on the exact sequence (a) we get depth(G_{a-1}) = depth(E_a). We also have by assumption

depth(G_{a-1}) = depth(E_a) \geq depth(E_{a-1}).

By applying Depth Lemma on the exact sequence (a-1) we have depth(G_{a-2}) = depth(E_{a-1}). We repeat the same steps on all exact sequences one by one from bottom to top and we get depth(G_{i-1}) = depth(E_i) for all i. Thus if $i = 1$ then we have depth(G_0) = depth(E_1).

Lemma 3.2. Let $k \geq 2$ and $n \geq 2k+2$. Then

\[
S/(I(P^k_n), A_{n-1}) \cong S_{n-k-1}/I(P^k_{n-k-1})[x_n].
\]

Proof. Since

\[
\mathcal{G}(I(P^k_n)) = \bigcup_{i=1}^{n-k} \{x_i x_{i+1}, x_i x_{i+2}, \ldots, x_i x_{i+k}\} \cup \bigcup_{i=n-k+1}^{n-1} \{x_i x_{i+1}, x_i x_{i+2}, \ldots, x_i x_n\},
\]
so we have

\[I(P_n^k) + A_{n-1} = A_{n-1} + \]
\[
\left\lfloor \sum_{i=1}^{n-2k-1} (x_i x_{i+1}, x_i x_{i+2}, \ldots, x_i x_{i+k}) + \sum_{i=n-2k}^{n-k} (x_i x_{i+1}, x_i x_{i+2}, \ldots, x_i x_{i+k}) + \right. \\
\left. \sum_{i=n-k+1}^{n-1} (x_i x_{i+1}, x_i x_{i+2}, \ldots, x_i x_n) \right\rfloor = \sum_{i=1}^{n-2k-1} (x_i x_{i+1}, x_i x_{i+2}, \ldots, x_i x_{i+k}) + \\
\sum_{i=n-k+1}^{n-2k-2} (x_i x_{i+1}, x_i x_{i+2}, \ldots, x_i x_{n-1}) + A_{n-1} = I(P_{n-k-1}^k) + A_{n-1}.
\]

Thus the required result follows.

Lemma 3.3. Let \(k \geq 2, 0 \leq i \leq k - 1 \) and \(n \geq 3k + 2 \). Then

\[S/(I(P_n^k) : x_{n-k+i}) \cong S_{n-2k-1+i}/I(P_{n-2k-1+i}^k)[x_{n-k+i}].\]

Proof. It is enough to prove that \((I(P_n^k) : x_{n-k+i}) = (I(P_{n-k-1+i}^k), B_{n-k+i}) \).

Clearly

\[I(P_{n-2k-1+i}^k) \subset I(P_n^k) \subset (I(P_n^k) : x_{n-k+i}).\]

Let \(u \in B_{n-k+i} \), then by definition of \(I(P_n^k) \), \(u x_{n-k+i} \in I(P_n^k) \) that is \(u \in (I(P_n^k) : x_{n-k+i}) \). Thus \(B_{n-k+i} \subset (I(P_n^k) : x_{n-k+i}) \) and we have \((I(P_{n-2k-1+i}^k), B_{n-k+i}) \subset (I(P_n^k) : x_{n-k+i}) \). Now for the other inclusion, let \(w \) be a monomial generator of \((I(P_n^k) : x_{n-k+i}) \), then \(w = \frac{v}{\text{gcd}(v, x_{n-k+i})} \), where \(v \in S(I(P_n^k)) \). If \(\text{supp}(v) \cap \text{supp}(B_{n-k+i}) \neq \emptyset \), then we have \(w \in S(B_{n-k+i}) \) and if \(\text{supp}(v) \cap \text{supp}(B_{n-k+i}) = \emptyset \), then \(w \in S(I(P_n^k)) \cap K[x_1, x_2, \ldots, x_{n-2k-1+i}] = S(I(P_{n-2k-1+i}^k)) \).

Lemma 3.4. Let \(n \geq 3k + 2 \) and \(0 \leq i \leq k - 1 \), then we have

\[S/(I(P_n^k), A_{n-k+(i-1)}) : x_{n-k+i} \cong S_{n-2k-1+i}/I(P_{n-2k-1+i}^k)[x_{n-k+i}].\]

Proof. As \((I(P_n^k), A_{n-k+(i-1)}) : x_{n-k+i} = (I(P_n^k) : x_{n-k+i}), A_{n-k+(i-1)} \).

Now using the proof of Lemma 3.3 we obtain

\[(I(P_n^k) : x_{n-k+i}, A_{n-k+(i-1)}) = (I(P_{n-2k-1+i}^k), B_{n-k+i}, A_{n-k+(i-1)}) = (I(P_{n-2k-1+i}^k), B_{n-k+i}), \]

as \(A_{n-k+(i-1)} \subset B_{n-k+i} \). Thus the required result follows by Lemma 3.3.
Remark 3.5. Let $m \geq 2$ and $I(P_m^{m-1}) \subset S_m = K[x_1, x_2, \ldots, x_m]$ be the edge ideal of the $(m - 1)^{th}$ power of path P_m. Then $I(P_m^{m-1})$ is a squarefree Veronese ideal of degree 2 in variables x_1, x_2, \ldots, x_m. Thus by [10, Corollary 10.3.7] and Theorem 3.9

\[
\text{depth}(S_n/I(P_m^{m-1})) = \text{sdepth}(S_n/I(P_m^{m-1})) = 1.
\]

Remark 3.6. Let $k \geq 2$ and $2k + 2 \leq n \leq 3k + 1$, then it is easy to see that

1. If $n = 2k + 2$, then
 \[
 S/(I(P_n^k) : x_n) = S/(x_2, \ldots, x_{n-k-1}, x_{n-k+1}, \ldots, x_n) \cong K[x_1, x_{n-k}].
 \]

2. If $0 \leq i < k - 1$ and $n > 2k + 2$, then
 \[
 S/(I(P_n^k) : x_{n-k+i}) = S/((I(P_n^k), A_{n-k+i}) : x_{n-k+i})
 \cong S_{n-2k-1+i}/I(P_{n-2k-1+i}^k)[x_{n-k+i}]
 \begin{cases}
 S_{n-2k-1+i}/I(P_{n-2k-1+i}^k)[x_{n-k+i}], & \text{if } n - 2k - 1 + i \geq k + 1; \\
 S_{n-2k-1+i}/I(P_{n-2k-1+i}^k)[x_{n-k+i}], & \text{otherwise}.
 \end{cases}
 \]

We recall a lemma from [11] which is heavily used in this paper.

Lemma 3.7 ([11, Lemma 3.6]). Let $J \subset I$ be monomial ideals of S, and let $T = S[x_{n+1}]$ be the polynomial ring over S in the variable x_{n+1}. Then \(\text{depth}(IT/JT) = \text{depth}(I/J) + 1 \) and \(\text{sdepth}(IT/JT) = \text{sdepth}(I/J) + 1 \).

Theorem 3.8. Let $n \geq 2$. Then \(\text{depth}(S/I(P_n^k)) = \lceil \frac{n}{2k+1} \rceil \).

Proof.

1. If $n \leq k + 1$, then $I(P_n^k)$ is a squarefree Veronese ideal thus by Remark 3.5, \(\text{depth}(S/I(P_n^k)) = 1 = \lceil \frac{n}{2k+1} \rceil \).

2. For $n \geq k + 2$, we consider the following cases:

 - **(1) If $k = 1$, then by [18, Lemma 2.8] we have \(\text{depth}(S/I(P_1^1)) = \lceil \frac{n}{3} \rceil = \lceil \frac{n}{2k+1} \rceil \).**
 - **(2) If $k \geq 2$ and $2k + 2 \leq n \leq 2k + 1$, then we get \(\text{depth}(S/I(P_n^k)) \geq 1 \) as \(m \not\in \text{Ass}(S/I(P_n^k)) \). Since $x_{k+1} \not\in I(P_n^k)$ and $x_s x_{k+1} \in S(I(P_n^k))$ for all $s \in \{1, 2, \ldots, k, k + 2, \ldots, n\}$, therefore we have \((I(P_n^k) : x_{k+1}) = (x_1, \ldots, x_k, x_{k+2}, \ldots, x_n) \). By [23, Corollary 1.3], we have
 \[
 \text{depth}(S/I(P_n^k)) \leq \text{depth}(S/(I(P_n^k) : x_{k+1}))
 = \text{depth}(S/(x_1, \ldots, x_k, x_{k+2}, \ldots, x_n)) = 1.
 \]
 Thus \(\text{depth}(S/I(P_n^k)) = 1 = \lceil \frac{n}{2k+1} \rceil \).
(3) For $k \geq 2$, $2k + 2 \leq n \leq 3k + 1$ and $0 \leq i \leq k - 1$, consider the family of short exact sequences

\[
0 \longrightarrow S/(I(P^k_n), A_{n-k+(i-1)}) : x_{n-k+i} \\
S/(I(P^k_n), A_{n-k+(i-1)}) \longrightarrow S/(I(P^k_n), A_{n-k+i}) \longrightarrow 0
\]

By Lemma 3.2, $S/(I(P^k_n), A_{n-1}) \cong S_{n-k-1}/I(P^k_{n-k-1})[x_n]$. Since we are considering the case $2k + 2 \leq n \leq 3k + 1$ which implies that $k + 1 \leq n - k - 1 \leq 2k$. If $n - k - 1 = k + 1$ then $S_{n-k-1}/I(P^k_{n-k-1}) = S_{k+1}/I(P^k_{k+1})$, by Remark 3.5 and Lemma 3.7 we have depth $S/(I(P^k_n), A_{n-1}) = 2$. If $2k + 1 < n - k - 1 \leq 2k$, then by case(b)(2) depth$(S_{n-k-1}/I(P^k_{n-k-1})) = 1$. Thus by Lemma 3.7 we have depth $(S/(I(P^k_n), A_{n-1})) = 2$. Now we show that depth $(S/(I(P^k_n) : x_{n-k})) = 2$. For this we consider two cases:

If $n = 2k + 2$, then by Remark 3.6

\[
S/(I(P^k_n) : x_{n-k}) = \]

\[
S/(x_2, x_3, \ldots, x_{n-k-1}, x_{n-k+1}, \ldots, x_n) \cong K[x_1, x_{n-k}],
\]

and thus depth $(S/(I(P^k_n) : x_{n-k})) = 2$. If $n > 2k + 2$, by Remark 3.6 we have

\[
S/(I(P^k_n) : x_{n-k}) \cong S_{n-2k-1}/I(P^n_{n-2k-2})[x_{n-k}],
\]

where $2 \leq n - 2k - 1 \leq k$. Thus by Remark 3.5 and Lemma 3.7 we get depth $(S/(I(P^k_n) : x_{n-k})) = 2$. Now for $1 \leq i \leq k - 1$, by Remark 3.6 we obtain

\[
S/(I(P^k_n), A_{n-k+(i-1)}) : x_{n-k+i} = S/(I(P^k_n) : x_{n-k+i})
\]

\[
\cong S_{n-2k-1+i}/I(P^{(n-k+i)}_{n-2k-1+i})[x_{n-k+i}].
\]

Let $T := S_{n-2k-1+i}/I(P^{(n-k+i)}_{n-2k-1+i})[x_{n-k+i}]$. We consider the following cases:

(i) If $k + 1 = n - 2k - 1 + i$, then $T = S_{k+1}/I(P^k_{k+1})[x_{n-k+i}]$, thus by case(a) and Lemma 3.7 we have depth$(T) = 2$.

(ii) For $k+1 < n-2k-1+i$, $T = S_{n-2k-1+i}/I(P^n_{n-2k-1+i})[x_{n-k+i}]$. Since $k + 2 \leq n - 2k - 1 + i \leq 2k - 1$, thus by case(b)(2) and Lemma 3.7 we have depth$(T) = 2$.

(iii) If $2 \leq n - 2k - 1 + i < k + 1$, then

$$T = S_{n-2k-1+i}/I(P_{n-2k-1+i}^k)[x_{n-k+i}],$$

by Remark 3.5 and Lemma 3.7 we have $\text{depth}(T) = 2$.

Thus by Lemma 3.1 we have $\text{depth}(S/I(P_n^k)) = 2$.

(4) For $k \geq 2$, $n \geq 3k + 2$ and $0 \leq i \leq k - 1$, consider the family of short exact sequences

$$0 \rightarrow S/((I(P_n^k), A_{n-k+i-1}) : x_{n-k+i}) \xrightarrow{x_{n-k+i}}$$

$$S/(I(P_n^k), A_{n-k+i-1}) \rightarrow S/(I(P_n^k), A_{n-k+i}) \rightarrow 0$$

By Lemma 3.2, $S/(I(P_n^k), A_{n-1}) \cong S_{n-1}/I(P_{n-1}^k)[x_n]$. Thus by induction on n and Lemma 3.7 we have $\text{depth}(S/(I(P_n^k), A_{n-1})) = \lceil \frac{n-k}{2k+1} \rceil + 1$. By Lemma 3.4 we have

$$S/(I(P_n^k), A_{n-k+i-1}) \cong S_{n-2k-1+i}/I(P_{n-2k-1+i}^k)[x_{n-k+i}].$$

Thus by induction on n and Lemma 3.7 we have

$$\text{depth}(S/(I(P_n^k), A_{n-k+i-1}) : x_{n-k+i}) = \lceil \frac{n-2k-1+i}{2k+1} \rceil + 1.$$

Here we can see that

$$\text{depth}(S/(I(P_n^k), A_{n-1})) = \lceil \frac{n-k-1}{2k+1} \rceil + 1 \geq$$

$$\lceil \frac{n-k-2}{2k+1} \rceil + 1 = \text{depth}(S/(I(P_n^k), A_{n-2}) : x_{n-1}),$$

and for all $1 \leq i \leq k - 1$,

$$\text{depth}(S/(I(P_n^k), A_{n-k+i-1}) : x_{n-k+i}) = \lceil \frac{n-2k-1+i}{2k+1} \rceil + 1 \geq$$

$$\lceil \frac{n-2k-2+i}{2k+1} \rceil + 1 = \text{depth}(S/(I(P_n^k), A_{n-k+i-2}) : x_{n-k+i-1}).$$

Thus by Lemma 3.1 we have $\text{depth}(S/I(P_n^k)) = \lceil \frac{n-2k-1}{2k+1} \rceil + 1 = \lceil \frac{n}{2k+1} \rceil$.

Let $d \in [n]$ and $I_{n,d} := (u \in S \text{ square free monomial} : \deg(u) = d)$. Then $I_{n,d}$ is called squarefree Veronese ideal of degree d in the variables x_1, x_2, \ldots, x_n. Cimpoeas proved the following theorems:
Theorem 3.9 ([5, Theorem 1.1]).

1. \(\text{sdepth}(S/I_{n,d}) = d - 1. \)
2. \(d \leq \text{sdepth}(I_{n,d}) \leq \frac{n-d}{d+1} + d. \)

Theorem 3.10 ([7, Theorem 1.4]). Let \(M \) be a \(\mathbb{Z}^n \)-graded \(S \)-module. If \(\text{sdepth}(M) = 0 \), then \(\text{depth}(M) = 0 \). Conversely, if \(\text{depth}(M) = 0 \) and \(\dim_K(M_a) = 1 \) for any \(a \in \mathbb{Z}^n \), then \(\text{sdepth}(M) = 0 \).

Lemma 3.11 ([25, Lemma 4]). Let \(n \geq 2 \), then \(\text{sdepth}(S/I(P^1_n)) = \lceil \frac{n}{3} \rceil \).

Example 3.12. Let \(n \geq 2 \), and \(n \leq 2k + 1 \), then \(\text{sdepth}(S/I(P^k_n)) = 1 \).

Proof. If \(n \leq k + 1 \), then by Theorem 3.9 \(\text{sdepth}(S/I(P^k_n)) = 1 \). Now if \(k + 2 \leq n \leq 2k + 1 \), then \(\text{sdepth}(S/I(P^k_n)) \geq 1 \) as \(m \notin \text{Ass}(S/I(P^k_n)) \), thus by Theorem 3.10 \(\text{sdepth}(S/I(P^k_n)) \geq 1 \). Since \(x_{k+1} \notin I(P^k_n) \) and \(x_kx_{k+1} \in S/I(P^k_n) \) for all \(i \in \{1, \ldots, k, k+2, \ldots, n\} \), therefore \((I(P^k_n) : x_{k+1}) = (x_1, \ldots, x_k, x_{k+2}, \ldots, x_n) \). Thus by [4, Proposition 2.7] \(\text{sdepth}(S/I(P^k_n)) \leq \text{sdepth}(S/(I(P^k_n) : x_{k+1})) = \text{sdepth}(S/(x_1, \ldots, x_k, x_{k+2}, \ldots, x_n)) = 1. \)

Proposition 3.13. Let \(k \geq 2 \) and \(n \geq 2k + 2 \). Then

\[
\text{sdepth}(S/I(P^k_n)) \geq \lceil \frac{n}{2k+1} \rceil.
\]

Proof. (1) If \(2k + 2 \leq n \leq 3k + 1 \), then by applying Lemma 2.4 on the exact sequences in case(b)(3) of Theorem 3.8 we get \(\text{sdepth}(S/I(P^k_n)) \geq 2 = \lceil \frac{n}{2k+1} \rceil \).

(2) If \(n \geq 3k + 2 \), then the proof is similar to Theorem 3.8. We apply Lemma 2.4 on the exact sequences in case(b)(4) of Theorem 3.8 and obtain

\[
\text{sdepth}(S/I(P^k_n)) \geq \min \left\{ \text{sdepth}(S/I(P^k_n, A_{n-1})), \right.
\]

\[
\min_{i=0}^{k-1} \{\text{sdepth}(S/(I(P^k_n, A_{n-k+i-1}) : x_{n-k+i}))\} \geq \lceil \frac{n}{2k+1} \rceil.
\]

Theorem 3.14. Let \(n \geq 2 \), then \(\text{sdepth}(S/I(P^k_n)) = \lceil \frac{n}{2k+1} \rceil \).

Proof. If \(k = 1 \), then the result follows by Lemma 3.11. Let \(k \geq 2 \). If \(n \leq 2k + 1 \), then by Example 3.12 we have the required result. If \(n \geq 2k + 2 \), then by Proposition 3.13 we have

\[
\text{sdepth}(S/I(P^k_n)) \geq \lceil \frac{n}{2k+1} \rceil.
\]

We need to prove that \(\text{sdepth}(S/I(P^k_n)) \leq \lceil \frac{n}{2k+1} \rceil \), for this we consider the following three cases:
(1) If \(n = (2k + 1)l \), where \(l \geq 1 \). We see that
\[
v = x_{k+1}x_{3k+2}x_{5k+3} \cdots x_{(2k+1)l-k} \in S/I(P_n^k),
\]
but \(x_{t_1}v \in I(P_n^k) \) for all \(t_1 \in [n] \setminus \text{supp}(v) \), thus by Lemma 2.5,
\[
\text{sdepth}(S/I(P_n^k)) \leq l = \lceil \frac{n}{2k+1} \rceil.
\]

(2) If \(n = (2k + 1)l + r \), where \(r \in \{1, 2, 3, \ldots, k+1\} \) and \(l \geq 1 \), then we have
\[
v = x_{k+1}x_{3k+2}x_{5k+3} \cdots x_{(2k+1)l-k}x_{(2k+1)l+r} \in S/I(P_n^k),
\]
and \(x_{t_2}v \in I(P_n^k) \) for all \(t_2 \in [n] \setminus \text{supp}(v) \), so by Lemma 2.5,
\[
\text{sdepth}(S/I(P_n^k)) \leq l + 1 = \lceil \frac{n}{2k+1} \rceil.
\]

(3) If \(n = (2k + 1)l + s \), where \(s \in \{k+2, k+3, \ldots, 2k\} \) and \(l \geq 1 \), since
\[
v = x_{k+1}x_{3k+2}x_{5k+3} \cdots x_{(2k+1)l+k+1} \in S/I(P_n^k),
\]
but \(x_{t_3}v \in I(P_n^k) \) for all \(t_3 \in [n] \setminus \text{supp}(v) \), by Lemma 2.5, we get
\[
\text{sdepth}(S/I(P_n^k)) \leq l + 1 = \lceil \frac{n}{2k+1} \rceil.
\]

4 Depth and Stanley depth of cyclic modules associated to the edge ideals of the powers of a cycle

In this section, we compute bounds for depth and Stanley depth of cyclic modules associated to the edge ideals of powers of a cycle. In order to complete the main task of this section we prove the following three lemmas.

Lemma 4.1. Let \(k \geq 2 \) and \(n \geq 3k+2 \), then \(S/(I(C_n^k), A_{n-1}) \cong S_{n-k}/I(P_{n-k}^k) \).

Proof. Since \(S(I(C_n^k)) \cap \bigcup_{l=1}^{k-1} \{ x_1x_{l+n-k}, x_1x_{l+n-k+1}, \ldots, x_1x_{n-1} \} \cup \{ x_1x_n, x_2x_n, \ldots, x_kx_n \} \), we have
\[
I(C_n^k) + A_{n-1} = \\
I(P_n^k) + \sum_{l=1}^{k-1} (x_1x_{l+n-k}, x_1x_{l+n-k+1}, \ldots, x_1x_{n-1}) + (x_1x_n, x_2x_n, \ldots, x_kx_n) + A_{n-1}.
\]
Thus by the proof of Lemma 3.2, we obtain $I(P_n^k) + A_{n-1} = I(P_{n-k}^k) + A_{n-1}$.

As
\[\sum_{i=1}^{k-1} (x_1 x_{i+n-k}, x_1 x_{i+n-k+1}, \ldots, x_1 x_{n-1}) + A_{n-1} = A_{n-1}. \]

Therefore $S/(I(C_n^k), A_{n-1}) = S/(I(P_{n-k}^k), A_{n-1}, (x_1 x_n, x_2 x_n, \ldots, x_k x_n))$
\[\cong K[x_1, x_2, \ldots, x_{n-k}, x_n]/(I(P_{n-k}^k), (x_1 x_n, x_2 x_n, \ldots, x_k x_n)). \]

After renumbering the variables, we have $K[x_1, \ldots, x_{n-k-1}, x_n]/(I(P_{n-k}^k), (x_1 x_n, x_2 x_n, \ldots, x_k x_n)) \cong S_{n-k}/I(P_{n-k}^k)$. □

Lemma 4.2. Let $k \geq 2$ and $n \geq 3k + 2$ and $0 \leq i \leq k - 1$, then
\[S/(I(C_n^k) : x_{n-k+i}) \cong S_{n-2k-1}/I(P_{n-2k-1}^k)[x_{n-k+i}]. \]

Proof. Let w be a monomial generator of $(I(C_n^k) : x_{n-k+i})$. Then $w = \frac{v}{\gcd(v, x_{n-k+i})}$, where $v \in S/(I(C_n^k))$. If $\text{supp}(v) \cap \mathfrak{g}(D_{n-k+i}) \neq \emptyset$, then we have $w \in \mathfrak{g}(D_{n-k+i})$ and if $\text{supp}(v) \cap \mathfrak{g}(D_{n-k+i}) = \emptyset$ then $w \in E := \mathfrak{g}(I(C_n^k)) \cap K[x_{i+1}, x_{i+2}, \ldots, x_{n-2k+1+i}]$. So we obtain $(I(C_n^k) : x_{n-k+i}) \subset E + D_{n-k+i}$. The other inclusion being trivial we get $(I(C_n^k) : x_{n-k+i}) = E + D_{n-k+i}$, which further implies that $S/(I(C_n^k) : x_{n-k+i}) = S/(E + D_{n-k+i})$. After renumbering the variables, we have $S/(I(C_n^k) : x_{n-k+i}) = S/(E, D_{n-k+i}) \cong S_{n-2k-1}/I(P_{n-2k-1}^k)[x_{n-k+i}].$ □

Lemma 4.3. Let $k \geq 2$, $n \geq 3k + 2$ and $0 \leq i \leq k - 1$. Then
\[S/(I(C_n^k), A_{n-k+(i-1)}, A_{n-k+(i+1)}) : x_{n-k+i} \cong S_{n-2k-1}/I(P_{n-2k-1}^k)[x_{n-k+i}]. \]

Proof. As $(I(C_n^k), A_{n-k+(i+1)}) : x_{n-k+i} = (I(C_n^k) : x_{n-k+i}, A_{n-k+(i-1)})$. By using the same arguments as in the proof of Lemma 4.2 we have
\[((I(C_n^k), A_{n-k+(i-1)}), A_{n-k+i}) = (E, D_{n-k+i}, A_{n-k+(i-1)}) = (E, D_{n-k+i}) \]
\[A_{n-k+(i-1)} \subset D_{n-k+i}. \] Thus the required result follows by Lemma 4.2. □

Corollary 4.4 ([10, Corollary 10.3.7]). Let $2 \leq d < n$. Then
\[\text{depth}(S/I_{n,d}^t) = \max\{0, n - t(n - d) - 1\}. \]
Theorem 4.5. Let \(n \geq 3 \), then
\[
\text{depth}(S/I(C_n^k)) = \begin{cases}
1, & \text{if } n \leq 2k+1; \\
\left\lceil \frac{n-k}{2k+1} \right\rceil, & \text{if } n \geq 2k+2.
\end{cases}
\]

Proof. (a) If \(n \leq 2k+1 \), then \(I(C_n^k) \) is a squarefree Veronese ideal of degree 2. Thus by Corollary 4.4, \(\text{depth}(S/I(C_n^k)) = 1 \).

(b) For \(n \geq 2k+2 \), we consider the following cases:

(1) If \(k = 1 \), then by [6, Proposition 1.3] \(\text{depth}(S/I(C_1^1)) = \left\lceil \frac{n-1}{3} \right\rceil \).

(2) If \(k \geq 2 \) and \(2k+2 \leq n \leq 3k+1 \), then we have \(\text{depth}(S/I(C_n^k)) \geq 1 = \left\lceil \frac{n-k}{2k+1} \right\rceil \) as \(m \notin \text{Ass}(S/I(C_n^k)) \).

(3) For \(k \geq 2 \), \(n \geq 3k+2 \) and \(0 \leq i \leq k-1 \), consider the family of short exact sequences
\[
0 \longrightarrow S/((I(C_n^k), A_{n-k+(i-1)}) : x_{n-k+i}) \longrightarrow S/(I(C_n^k), A_{n-k}) \longrightarrow S/(I(C_n^k), A_{n-k+i}) \longrightarrow 0
\]

By Lemma 4.1 we have \(S/(I(C_n^k), A_{n-1}) \cong S_{n-k}/I(P_{n-k}') \). Now by Lemma 4.3, we get
\[
S/((I(C_n^k), A_{n-k+(i-1)}) : x_{n-k+i}) \cong S_{n-2k-1}/I(P_{n-2k-1}'][x_{n-k+i}].
\]

By Theorem 3.8 and Lemma 3.7, we obtain
\[
\text{depth}(S/((I(C_n^k), A_{n-k+(i-1)}) : x_{n-k+i})) = \left\lceil \frac{n-2k-1}{2k+1} \right\rceil + 1 = \left\lceil \frac{n}{2k+1} \right\rceil.
\]

Again by Theorem 3.8, we have \(\text{depth}(S/(I(C_n^k), A_{n-1})) = \left\lceil \frac{n-k}{2k+1} \right\rceil \). Thus by applying Lemma 2.3(1) on the family of short exact sequences we get
\[
\text{depth}(S/I(C_n^k)) \geq \left\lceil \frac{n-k}{2k+1} \right\rceil.
\]

Corollary 4.6. Let \(n \geq 3 \). If \(n \geq 2k+2 \), then
\[
\text{depth}(S/I(C_n^k)) = \begin{cases}
\left\lceil \frac{n}{2k+1} \right\rceil, & \text{if } n \equiv 0, k+1, \ldots, 2k \mod(2k+1); \\
\left\lceil \frac{n}{2k+1} \right\rceil - 1 \leq \text{depth}(S/I(C_n^k)) \leq \left\lceil \frac{n}{2k+1} \right\rceil, & \text{if } n \equiv 1, \ldots, k \mod(2k+1).
\end{cases}
\]

Proof. By Theorem 4.5, it is enough to prove that \(\text{depth}(S/I(C_n^k)) \leq \left\lceil \frac{n}{2k+1} \right\rceil \) for \(k \geq 2 \) and \(n \geq 2k+2 \). Since \(x_{n-k} \notin I(C_n^k) \), thus by [23, Corollary 1.3] we have \(\text{depth}(S/I(C_n^k)) \leq \text{depth}(S/(I(C_n^k) : x_{n-k})) \). Now we consider two cases:
(1) Let \(2k + 2 \leq n \leq 3k + 1 \), then \(S/(I(C_n^k) : x_{n-k}) = S/(I(P_n^k) : x_{n-k}) \) so by the proof of Theorem 3.8 we have \(\text{depth}(S/(I(P_n^k) : x_{n-k})) = 2 = \left\lceil \frac{n}{2k+1} \right\rceil \). Therefore
\[
\text{depth}(S/(I(C_n^k))) \leq \text{depth}(S/(I(C_n^k) : x_{n-k})) = 2 = \left\lceil \frac{n}{2k+1} \right\rceil.
\]

(2) Let \(n \geq 3k + 2 \), then by Lemma 4.2,
\[
S/(I(C_n^k) : x_{n-k}) \cong S_{n-2k-1}/I(P_{n-2k-1}^k)[x_{n-k}].
\]
By Lemma 3.7 and Theorem 3.8,\(\text{depth}(S_{n-2k-1}/I(P_{n-2k-1}^k)[x_{n-k}]) = \left\lceil \frac{n}{2k+1} \right\rceil \). Thus \(\text{depth}(S/(I(C_n^k))) \leq \text{depth}(S/(I(C_n^k) : x_{n-k})) = \left\lceil \frac{n}{2k+1} \right\rceil \).

\[\square \]

Theorem 4.7. Let \(n \geq 3 \), then
\[
\text{sdepth}(S/I(C_n^k)) = \begin{cases} 1, & \text{if } n \leq 2k + 1; \\ \left\lceil \frac{n-k}{2k+1} \right\rceil, & \text{if } n \geq 2k + 2.
\end{cases}
\]

Proof.
(a) If \(n \leq 2k + 1 \), then \(\text{sdepth}(S/I(C_n^k)) = 1 \) by Theorem 3.9.
(b) For \(n \geq 2k + 2 \), consider the following cases:

(1) If \(k = 1 \), then by [6, Proposition 1.8] \(\text{sdepth}(S/I(C_n^1)) \geq \left\lceil \frac{n+1}{3} \right\rceil \).

(2) If \(k \geq 2 \) and \(2k + 2 \leq n \leq 3k + 1 \), then \(\text{depth}(S/I(C_n^k)) \geq 1 \) as \(m \notin \text{Ass}(S/I(C_n^k)) \), thus by Theorem 3.10, \(\text{sdepth}(S/I(C_n^k)) \geq 1 = \left\lceil \frac{n-k}{2k+1} \right\rceil \).

(3) For \(k \geq 2 \), \(n \geq 3k + 2 \) and \(0 \leq i \leq k - 1 \), consider the family of short exact sequences
\[
0 \longrightarrow S/(I(C_n^k), A_{n-k+i}) : x_{n-k+i}) \longrightarrow S/(I(C_n^k), A_{n-k+i}) \longrightarrow S/(I(C_n^k), A_{n-k+i}) \longrightarrow 0.
\]
By Lemma 4.1 we have \(S/(I(C_n^k), A_{n-1}) \cong S_{n-k}/I(P_{n-k}^k) \). Now by Lemma 4.3, we get
\[
S/(I(C_n^k), A_{n-k+i}) \cong S_{n-2k-1}/I(P_{n-2k-1}^k)[x_{n-k+i}].
\]
By Theorem 3.14 and Lemma 3.7, we obtain
\[
\text{sdepth}(S/(I(C_n^k), A_{n-k+i}) : x_{n-k+i})) = \left\lceil \frac{n-2k-1}{2k+1} \right\rceil + 1 = \left\lceil \frac{n}{2k+1} \right\rceil.
\]
Again by Theorem 3.14, we have \(\text{sdepth}(S/(I(C_n^k), A_{n-1})) = \lceil \frac{n-k}{2k+1} \rceil \).

By applying Lemma 2.4 on the above family of short exact sequences we get \(\text{sdepth}(S/I(C_n^k)) \geq \lceil \frac{n}{2k+1} \rceil \).

\[\text{Corollary 4.8.} \text{ Let } n \geq 3, \text{ if } n \geq 2k + 2, \text{ then} \]

\[
\begin{align*}
\text{sdepth}(S/I(C_n^k)) &= \left\lceil \frac{n}{2k+1} \right\rceil, & \text{if } n \equiv 0, k+1, \ldots, 2k \pmod{2k+1}; \\
\left\lceil \frac{n}{2k+1} \right\rceil - 1 &\leq \text{sdepth}(S/I(C_n^k)) \leq \left\lceil \frac{n}{2k+1} \right\rceil, & \text{if } n \equiv 1, \ldots, k \pmod{2k+1}.
\end{align*}
\]

\[\text{Proof.} \text{ When } k = 1, \text{ then by [6, Theorem 1.9], } \text{sdepth}(S/I(C_n^k)) \leq \left\lceil \frac{n}{2k+1} \right\rceil. \text{ By Theorem 4.7 it is enough to prove that } \text{sdepth}(S/I(C_n^k)) \leq \left\lceil \frac{n}{2k+1} \right\rceil \text{ for } k \geq 2 \text{ and } n \geq 2k + 2. \text{ Since } x_{n-k} \notin I(C_n^k), \text{ thus by [4, Proposition 2.7] we have} \]

\[\text{sdepth}(S/I(C_n^k)) \leq \text{sdepth}(S/(I(C_n^k) : x_{n-k})). \]

Now we consider two cases:

(1) Let \(2k + 2 \leq n \leq 3k + 1 \), then \(S/(I(C_n^k) : x_{n-k}) = S/(I(P_n^k) : x_{n-k}) \) so by the proof of Theorem 3.14 we have \(\text{sdepth}(S/(I(P_n^k) : x_{n-k})) = 2 = \left\lceil \frac{n}{2k+1} \right\rceil \). Therefore

\[\text{sdepth}(S/I(C_n^k)) \leq \text{sdepth}(S/(I(C_n^k) : x_{n-k})) = 2 = \left\lceil \frac{n}{2k+1} \right\rceil. \]

(2) Let \(n \geq 3k + 2 \), then by Lemma 4.2

\[S/(I(C_n^k) : x_{n-k}) \cong S_{n-2k-1}/(I(P_n^{k-2k-1})[x_{n-k}]). \]

By Lemma 3.7 and Theorem 3.14, \(\text{sdepth}(S_{n-2k-1}/(I(P_n^{k-2k-1})[x_{n-k}]) = \left\lceil \frac{n}{2k+1} \right\rceil \). Thus \(\text{sdepth}(S/I(C_n^k)) \leq \text{sdepth}(S/(I(C_n^k) : x_{n-k})) = \left\lceil \frac{n}{2k+1} \right\rceil \).

\[\square \]

5 Lower bounds for Stanley depth of edge ideals of \(k \)th powers of paths and cycles and a conjecture of Herzog

In this section we compute some lower bounds for Stanley depth of \(I(P_n^k) \) and \(I(C_n^k) \). These bounds are good enough to prove that Conjecture 1.1 is true for \(I(P_n^k) \) and \(I(C_n^k) \). Let \(0 \leq i \leq k - 1 \), define

\[R_{n-k+i} := K[\{x_1, x_2, \ldots, x_n\} \setminus \{x_{n-k}, x_{n-k+1}, \ldots, x_{n-k+i}\}] \]
and

\[B'_{n-k+i} := \{ x_j : x_j \in N_{P_n^k}^+(x_{n-k+i}) \} \setminus \{ x_{n-k}, x_{n-k+1}, \ldots, x_{n-k+(i-1)} \} \].

Thus \(R_{n-k+i} \) is a subring of \(S \) and \(B'_{n-k+i} \) is a monomial prime ideal of \(S \). Let \(I \subset Z = K[x_{i_1}, x_{i_2}, \ldots, x_{i_r}] \) be a monomial ideal and \(Z' := Z[x_{i_r+1}] \). Then we write \(IZ' = I[x_{i_r+1}] \). Now we recall a useful remark of Cimpoeas.

Remark 5.1. [4, Remark 1.7] Let \(I \) be a monomial ideal of \(S \), and \(I' = (I, x_{n+1}, x_{n+2}, \ldots, x_{n+m}) \) be a monomial ideal of \(S' = S[x_{n+1}, x_{n+2}, \ldots, x_{n+m}] \). Then

\[\operatorname{sdepth}_S(I') \geq \min\{ \operatorname{sdepth}_S(I) + m, \operatorname{sdepth}_S(S/I) + \left\lceil \frac{m}{2} \right\rceil \}. \]

Theorem 5.2. Let \(n \geq 2 \), then \(\operatorname{sdepth}(I(P_n^k)) \geq \left\lceil \frac{n}{2k+1} \right\rceil + 1 \).

Proof.

(a) If \(n \leq 2k + 1 \), then as the minimal generators of \(I(P_n^k) \) have degree 2, by [15, Lemma 2.1] we have \(\operatorname{sdepth}(I(P_n^k)) \geq 2 = \left\lceil \frac{n}{2k+1} \right\rceil + 1 \).

(b) For \(n \geq 2k + 2 \), if \(k = 1 \), then by [19, Theorem 2.3], \(\operatorname{sdepth}(I(P_n^1)) \geq n - \lfloor \frac{n-1}{2} \rfloor = \left\lceil \frac{n-1}{2} \right\rceil + 1 \geq \left\lceil \frac{n}{2} \right\rceil + 1 \). Now for \(k \geq 2 \), we prove this result by induction on \(n \). We consider the following decomposition of \(I(P_n^k) \) as a vector space:

\[I(P_n^k) = I(P_n^k) \cap R_{n-k} \oplus x_{n-k}(I(P_n^k) : x_{n-k})S. \]

Similarly, we can decompose \(I(P_n^k) \cap R_{n-k} \) as follows:

\[I(P_n^k) \cap R_{n-k} = I(P_n^k) \cap R_{n-k} \oplus x_{n-k+1}(I(P_n^k) \cap R_{n-k} : x_{n-k+1})R_{n-k}. \]

Continuing in the same way for \(1 \leq i \leq k-1 \) we have

\[I(P_n^k) \cap R_{n-k+i} = I(P_n^k) \cap R_{n-k+(i+1)} \oplus x_{n-k+(i+1)}(I(P_n^k) \cap R_{n-k+i} : x_{n-k+(i+1)})R_{n-k+i}. \]

Finally we get the following decomposition of \(I(P_n^k) \):

\[I(P_n^k) = I(P_n^k) \cap R_{n-1} \oplus \bigoplus_{i=1}^{k-1} x_{n-k+i}(I(P_n^k) \cap R_{n-k+(i-1)} : x_{n-k+i})R_{n-k+i} \oplus x_{n-k}(I(P_n^k) : x_{n-k})S. \]

Therefore

\[\operatorname{sdepth}(I(P_n^k)) \geq \min \left\{ \operatorname{sdepth}(I(P_n^k) \cap R_{n-1}), \operatorname{sdepth}(I(P_n^k) : x_{n-k})S, \min_{i=1}^{k-1} \operatorname{sdepth}(I(P_n^k) \cap R_{n-k+i} : x_{n-k+i})R_{n-k+i}) \right\}. \]
As $I(P_n^k) \cap R_{n-1} = \mathcal{S}(I(P_{n-k}^k))[x_n]$, thus by induction on n and Lemma 3.7 we have $\text{sdepth}(I(P_n^k) \cap R_{n-1}) \geq \left\lceil \frac{n-k-1}{2k+1} \right\rceil + 1 \geq \left\lceil \frac{n}{2k+1} \right\rceil + 1$. Now we need to show that $\text{sdepth}(I(P_n^k) : x_{n-k})S \geq \left\lceil \frac{n}{2k+1} \right\rceil + 1$ and

$$\text{sdepth}(I(P_n^k) \cap R_{n-k+1} : x_{n-k+i}R_{n-k+i}) \geq \left\lceil \frac{n}{2k+1} \right\rceil + 1.$$

For this we consider the following cases:

1. Let $2k + 2 \leq n \leq 3k + 1$. If $n = 2k + 2$, then $(I(P_n^k) : x_{n-k})S = (x_2, x_{n-k-1}, x_{n-k+1}, \ldots, x_n)S$, thus by [2, Theorem 2.2] and Lemma 3.7 we have

$$\text{sdepth}(I(P_n^k) : x_{n-k})S = \left\lceil \frac{n-2}{2} \right\rceil + 2 \geq \left\lceil \frac{n}{2k+1} \right\rceil + 1.$$

If $2k + 3 \leq n \leq 3k + 1$, then by Remark 3.6, we get

$$(I(P_n^k) : x_{n-k})S = (\mathcal{S}(I(P_{n-2k-1}^k)), B_{n-k})[x_{n-k}].$$

Since $\text{sdepth}(I(P_{n-2k-1}^k)(n-k)) + |\mathcal{S}(B_{n-k})| \geq 2$, by Remark 3.5 we have

$$\text{sdepth}(S_{n-2k-1}/I(P_{n-2k-1}^k) + \left\lceil \frac{|\mathcal{S}(B_{n-k})|}{2} \right\rceil \geq 2,$n$$

then by Remark 5.1, $\text{sdepth}(\mathcal{S}(I(P_{n-2k-1}^k)), B_{n-k}) \geq 2$, and by Lemma 3.7 we have $\text{sdepth}(I(P_n^k) : x_{n-k})S \geq 3 = \left\lceil \frac{n}{2k+1} \right\rceil + 1$. Now since

$$(I(P_n^k) \cap R_{n-k+1} : x_{n-k+i}R_{n-k+i}) = (\mathcal{S}(I(P_{n-2k-1}^k)), B_{n-k+i}'[x_{n-k+i}].$$

So by the same arguments we have

$$\text{sdepth}(I(P_n^k) \cap R_{n-k+1} : x_{n-k+i}R_{n-k+i}) \geq 3 = \left\lceil \frac{n}{2k+1} \right\rceil + 1.$$

2. If $n \geq 3k + 2$, then by the proof of Lemma 3.3 ($I(P_n^k) : x_{n-k})S = (\mathcal{S}(I(P_{n-2k-1}^k)), B_{n-k})[x_{n-k}]$ and

$$(I(P_n^k) \cap R_{n-k+1} : x_{n-k+i}R_{n-k+i}) = (\mathcal{S}(I(P_{n-2k-1+i}^k)), B_{n-k+i}'[x_{n-k+i}].$$
By Remark 5.1 we have

\[
\text{sdepth}(\mathcal{G}(I(P^k_n - 2k - 1)), B_{n-k}) \geq \min \left\{ \text{sdepth}(\mathcal{G}(I(P^k_n - 2k - 1))) + (\mathcal{G}(B_{n-k})), \text{sdepth}(S_{n-2k-1}/I(P^k_n - 2k - 1)) + \left\lfloor \frac{|\mathcal{G}(B_{n-k})|}{2} \right\rfloor \right\}
\]

By induction on \(n \) we have \(\text{sdepth}(\mathcal{G}(I(P^k_n - 2k - 1))) \geq \left\lceil \frac{n-2k-1}{2k+1} \right\rceil + 1 = \left\lceil \frac{n}{2k+1} \right\rceil \), and by Theorem 3.14, \(\text{sdepth}(S_{n-2k-1}/I(P^k_n - 2k - 1)) = \left\lceil \frac{n}{2k+1} \right\rceil - 1 \). Therefore \(\text{sdepth}(\mathcal{G}(I(P^k_n - 2k - 1))), B_{n-k}) \geq \left\lceil \frac{n}{2k+1} \right\rceil + 1 \).

Thus by Lemma 3.7 we have \(\text{sdepth}((I(P^k_n) : x_{n-k})S) > \left\lceil \frac{n}{2k+1} \right\rceil + 1 \).

Now using Remark 5.1 again, we get

\[
\text{sdepth}(\mathcal{G}(I(P^k_n - 2k - 1+i)), B'_{n-k+i}) \geq \min \left\{ \text{sdepth}(\mathcal{G}(I(P^k_n - 2k - 1+i))) + |\mathcal{G}(B'_{n-k+i})|, \text{sdepth}(S_{n-2k-1+i}/I(P^k_n - 2k - 1+i)) + \left\lfloor \frac{|\mathcal{G}(B'_{n-k+i})|}{2} \right\rfloor \right\}
\]

By induction on \(n \) we have \(\text{sdepth}(\mathcal{G}(I(P^k_n - 2k - 1+i))) \geq \left\lceil \frac{n-2k-1+i}{2k+1} \right\rceil + 1 \), and by Theorem 3.14 we have \(\text{sdepth}(S_{n-2k-1+i}/I(P^k_n - 2k - 1+i)) = \left\lceil \frac{n-2k-1+i}{2k+1} \right\rceil \). Therefore

\[
\text{sdepth}(\mathcal{G}(I(P^k_n - 2k - 1+i)), B'_{n-k+i}) \geq \left\lceil \frac{n-2k-1+i}{2k+1} \right\rceil + 1.
\]

Thus by Lemma 3.7

\[
\text{sdepth}((I(P^k_n) \cap R_{n-k+i-1} : x_{n-k+i})R_{n-k+i}) \geq \left\lceil \frac{n}{2k+1} \right\rceil + 1.
\]

This completes the proof.

\[\Box\]

Proposition 5.3. Let \(n \geq 2k + 1 \), then \(\text{sdepth}(I(C^k_n)/I(P^k_n)) \geq \left\lceil \frac{n+k+1}{2k+1} \right\rceil \).

Proof. When \(k = 1 \), then by [6, Proposition 1.10] we have the required result.

Now assume that \(k \geq 2 \) and consider the following cases:

\((1) \). If \(2k + 1 \leq n \leq 3k + 1 \), then as \(I(C^k_n) \) is a monomial ideal generated by degree 2 so by [11, Theorem 2.1] \(\text{sdepth}(I(C^k_n)/I(P^k_n)) \geq 2 = \left\lceil \frac{n+k+1}{2k+1} \right\rceil \).
Thus by Theorem 3.14 and Lemma 3.7, we have

\[
\text{sdepth}(I(C_n^k)/I(P_n^k)) \geq \min_{s=1}^k \left\lfloor \frac{n - (j_s + s + 2k)}{2k + 1} \right\rfloor + 2.
\]
It is easy to see that \(\max\{j_s + s\} = k + 1 \). Therefore

\[
sdepth(I(C^k_n)/I(P^k_n)) \geq \left\lceil \frac{n - (3k + 1)}{2k + 1} \right\rceil + 2 = \left\lceil \frac{n + k + 1}{2k + 1} \right\rceil.
\]

\[\square\]

Theorem 5.4. Let \(n \geq 3 \), then

\[
sdepth(I(C^k_n)) \geq 2, \quad \text{if} \quad n \leq 2k + 1;
\]

\[
sdepth(I(C^k_n)) \geq \left\lceil \frac{n - k}{2k + 1} \right\rceil + 1, \quad \text{if} \quad n \geq 2k + 2.
\]

Proof. (a) If \(n \leq 2k + 1 \), then as the minimal generators of \(I(C^k_n) \) have degree 2, so by [15, Lemma 2.1] \(sdepth(I(C^k_n)) \geq 2 \).

(b) If \(n \geq 2k + 2 \), then consider the short exact sequence

\[
0 \longrightarrow I(P^k_n) \longrightarrow I(C^k_n) \longrightarrow I(C^k_n)/I(P^k_n) \longrightarrow 0,
\]

by Lemma 2.4 we have

\[
sdepth(I(C^k_n)) \geq \min\{sdepth(I(P^k_n)), sdepth(I(C^k_n)/I(P^k_n))\}.
\]

By Theorem 5.2, \(sdepth(I(P^k_n)) \geq \left\lceil \frac{n}{2k+1} \right\rceil + 1 \), and by Proposition 5.3, we obtain \(sdepth(I(C^k_n)/I(P^k_n)) \geq \left\lceil \frac{n+k+1}{2k+1} \right\rceil = \left\lceil \frac{n-k}{2k+1} \right\rceil + 1 \).

\[\square\]

Corollary 5.5. Let \(n \geq 3 \), if \(n \leq 2k + 1 \), then \(sdepth(I(C^k_n)) \geq 2 = sdepth(S/I(C^k_n)) + 1 \). If \(n \geq 2k + 2 \), then

\[
sdepth(I(C^k_n)) \geq sdepth(S/I(C^k_n)), \quad \text{if} \quad n \equiv 1, \ldots, k \pmod{(2k + 1)};
\]

\[
sdepth(I(C^k_n)) \geq sdepth(S/I(C^k_n)) + 1, \quad \text{if} \quad n \equiv 0, k + 1, \ldots, 2k \pmod{(2k + 1)}.
\]

Proof. Proof follows by Corollary 4.8, Theorem 4.7 and Theorem 5.4.

Acknowledgement

The authors would like to thank the referee for a careful reading of the paper and for valuable comments. This research is partially supported by HEC Pakistan.
References

Zahid Iqbal,
School of Natural Sciences,
National University of Sciences and Technology Islamabad,
Sector H-12, Islamabad Pakistan.
Email: 786zahidwarrachi@gmail.com

Muhammad Ishaq,
School of Natural Sciences,
National University of Sciences and Technology Islamabad,
Sector H-12, Islamabad Pakistan.
Email: ishaq.maths@yahoo.com