Generalized 2-absorbing submodules

F. Farshadifar* and H. Ansari-Toroghy

Abstract

In this paper, we will introduce the concepts of generalized 2-absorbing submodules of modules over a commutative ring as generalizations of 2-absorbing submodules and obtain some related results.

1 Introduction

Throughout this paper, R will denote a commutative ring with identity, \mathbb{Z} and \mathbb{N} will denote respectively the ring of integers and the set of natural numbers. Let M be an R-module. A proper submodule P of M is said to be prime if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$ [7].

Badawi gave a generalization of prime ideals in [3] and said such ideals 2-absorbing ideals. A proper ideal I of R is a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. He proved that I is a 2-absorbing ideal of R if and only if whenever I_1, I_2, and I_3 are ideals of R with $I_1 I_2 I_3 \subseteq I$, then $I_1 I_2 \subseteq I$ or $I_1 I_3 \subseteq I$ or $I_2 I_3 \subseteq I$. In [4], the authors introduced the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$.

The authors in [6] and [12], extended 2-absorbing ideals to 2-absorbing submodules. A proper submodule N of M is called a 2-absorbing submodule...
of M if whenever $abm \in N$ for some $a, b \in R$ and $m \in M$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$.

The purpose of this paper is to introduce the concepts of generalized 2-absorbing submodules of an R-module M as a generalizations of 2-absorbing submodules of M and investigate some properties of this class of modules.

2 Generalized 2-absorbing submodules

Definition 2.1. We say that a proper submodule N of an R-module M is a generalized 2-absorbing submodule or G2-absorbing submodule of M if whenever $a, b \in R, m \in M$ and $abm \in N$, then $a \in \sqrt{(N :_R m)}$ or $b \in \sqrt{(N :_R m)}$ or $ab \in (N :_R M)$.

Example 2.2. Clearly every 2-absorbing submodule is a G2-absorbing submodule. But the converse is not true in general. For example, the submodule $8\mathbb{Z}$ of the \mathbb{Z}-module \mathbb{Z} is a G2-absorbing submodule which is not a 2-absorbing submodule. Also, the submodule $(1/p + \mathbb{Z})$ of \mathbb{Z}_{p^∞}, where p is a prime number, is a G2-absorbing submodule which is not a 2-absorbing submodule.

Example 2.3. Consider the submodule $N = 0$ of the \mathbb{Z}-module $M = \mathbb{Z}_{42}$. We have $2, 3, 7 = 0$ while $2 \cdot 3 \cdot 7 \neq 0$, $3 \cdot 7 \neq 0$, and $2, 3 \notin (0 :_{\mathbb{Z}} M) = 42\mathbb{Z}$ for all $i, j \in \mathbb{N}$. Thus the submodule N of M, is not G2-absorbing submodule.

Lemma 2.4. Let I be an ideal of R and N be a G2-absorbing submodule of M. If $a \in R, m \in M$ and $Iam \subseteq N$, then $a \in \sqrt{(N :_R m)}$ or $I \subseteq \sqrt{(N :_R m)}$ or $Ia \subseteq (N :_R M)$.

Proof. Let $a \notin \sqrt{(N :_R m)}$ and $Ia \notin (N :_R M)$. Then there exists $b \in I$ such that $ba \notin (N :_R M)$. Now, $bam \in N$ implies that $b \in \sqrt{(N :_R m)}$, since N is a G2-absorbing submodule of M. We have to show that $I \subseteq \sqrt{(N :_R m)}$. Let c be an arbitrary element of I. Thus $(b + c)a \in N$. Hence, either $b + c \in \sqrt{(N :_R m)}$ or $(b + c)a \in (N :_R M)$. If $b + c \in \sqrt{(N :_R m)}$, then by $b \in \sqrt{(N :_R m)}$ it follows that $c \in \sqrt{(N :_R m)}$. If $(b + c)a \in (N :_R M)$, then $ca \notin (N :_R M)$, but $cam \in N$. Thus $c \in \sqrt{(N :_R m)}$. Hence, we conclude that $I \subseteq \sqrt{(N :_R m)}$.

Lemma 2.5. Let I, J be ideals of R and N be a G2-absorbing submodule of M. If $m \in M$ and $IJm \subseteq N$, then $I \subseteq \sqrt{(N :_R m)}$ or $J \subseteq \sqrt{(N :_R m)}$ or $IJ \subseteq (N :_R M)$.

Proof. Let $I \notin \sqrt{(N :_R m)}$ or $J \notin \sqrt{(N :_R m)}$. We have to show that $IJ \subseteq (N :_R M)$. Assume that $c \in I$ and $d \in J$. By assumption there exists $a \in I$ such that $a \notin \sqrt{(N :_R m)}$ but $am \subseteq N$. Now, Lemma 2.4, shows that
Let $aJ \subseteq (N :_R M)$ and so $(I \setminus \sqrt{(N :_R m)})J \subseteq (N :_R M)$, similarly there exists $b \in J \setminus \sqrt{(N :_R m)}$ such that $IB \subseteq (N :_R M)$ and also $I(J \setminus \sqrt{(N :_R m)}) \subseteq (N :_R M)$. Thus we have the following.

By $a + c \in I$ and $b + d \in J$ it follows that $(a + c)(b + d)m \in N$. Therefore, $a + c \in \sqrt{(N :_R m)}$ or $b + d \in \sqrt{(N :_R m)}$ or $(a + c)(b + d) \in (N :_R M)$. If $a + c \in \sqrt{(N :_R m)}$, then $c \notin \sqrt{(N :_R m)}$ hence, $c \in I \setminus \sqrt{(N :_R m)}$ which implies that $cd \in (N :_R M)$. Similarly by $(b + d) \in \sqrt{(N :_R m)}$, we can deduce that $cd \in (N :_R M)$. If $(a + c)(b + d) \in (N :_R M)$, then $ab + ad + cb + cd \in (N :_R M)$ and so $cd \in (N :_R M)$. Therefore, $IJ \subseteq (N :_R M)$. \hfill \Box

Theorem 2.6. Let N be a proper submodule of M. The following statement are equivalent:

(a) N is a $G2$-absorbing submodule of M;

(b) If $IJL \subseteq N$ for some ideals I, J of R and a submodule L of M, then $I \subseteq \sqrt{(N :_R L)}$ or $J \subseteq \sqrt{(N :_R L)}$ or $IJ \subseteq (N :_R M)$.

Proof. (a) \Rightarrow (b) Let $IJL \subseteq N$ for some ideals I, J of R, a submodule L of M and $IJ \not\subseteq (N :_R M)$. Then by Lemma 2.5, for all $m \in L$ either $I \subseteq \sqrt{(N :_R m)}$ or $J \subseteq \sqrt{(N :_R m)}$. If $I \not\subseteq \sqrt{(N :_R m)}$, for all $m \in L$ we are done. Similarly if $J \not\subseteq \sqrt{(N :_R m)}$, for all $m \in L$ we are done. Suppose that $m, m_0 \in L$ are such that $I \not\subseteq \sqrt{(N :_R m)}$ and $J \not\subseteq \sqrt{(N :_R m_0)}$. Thus $J \subseteq \sqrt{(N :_R m)}$ and $I \subseteq \sqrt{(N :_R m_0)}$. Since $IJ(m + m_0) \subseteq N$ we have either $I \subseteq \sqrt{(N :_R m + m_0)}$ or $J \subseteq \sqrt{(N :_R m + m_0)}$. By $I \subseteq \sqrt{(N :_R m + m_0)}$, it follows that $I \subseteq \sqrt{(N :_R m)}$ which is a contradiction, similarly by $J \subseteq \sqrt{(N :_R m + m_0)}$ we get a contradiction. Therefore either $I \subseteq \sqrt{(N :_R L)}$ or $J \subseteq \sqrt{(N :_R L)}$.

(b) \Rightarrow (a) This is obvious. \hfill \Box

Proposition 2.7. Let N be a $G2$-absorbing submodule of an R-module M. Then we have the following.

(a) If K is a submodule of M such that $K \not\subseteq N$, then $(N :_R K)$ is a 2-absorbing primary ideal of R.

(b) $(N :_R M)$ is a 2-absorbing primary ideal of R.

Proof. (a) Let $a, b, c \in R$ and $abc \in (N :_R K)$. Then $a^t cK \subseteq N$ for some positive integer t or $b^s cK \subseteq N$ for some positive integer s or $abM \subseteq N$ since N is a $G2$-absorbing submodule of M. Therefore, $(ac)^t K \subseteq N$ or $(bc)^s K \subseteq N$ or $abK \subseteq N$ as needed.

(b) Since N is a proper submodule of M, this follows from part (a). \hfill \Box
Corollary 2.8. Let N be a G_2-absorbing submodule of an R-module M. Then $\sqrt{(N :_R M)}$ is a 2-absorbing ideal of R.

Proof. By Proposition 2.7 (b), $(N :_R M)$ is a 2-absorbing primary ideal of R. Thus, by [4, Theorem 2.2], we have $\sqrt{(N :_R M)}$ is a 2-absorbing ideal of R. □

An R-module M is said to be a **multiplication module** if for every submodule N of M there exists an ideal I of R such that $N = IM$ [5].

Corollary 2.9. Let M be a multiplication R-module. If N is a G_2-absorbing submodule of M such that $\sqrt{(N :_R M)} = (N :_R M)$, then N is a 2-absorbing submodule of M.

Proof. By Proposition 2.7 (b), $(N :_R M)$ is a 2-absorbing primary ideal of R. Thus $\sqrt{(N :_R M)} = (N :_R M)$ is a 2-absorbing ideal of R by [4, 2.2]. Now the result follows from [2, 3.9]. □

Let N be a submodule of an R-module M. The intersection of all prime submodules of M containing N is said to be the (prime) radical of N and denote by $\text{rad}(N)$. In case N does not contained in any prime submodule, the radical of N is defined to be M [10].

A proper submodule N of an R-module M is said to be a **2-absorbing primary submodule** of M if whenever $a, b \in R$, $m \in M$, and $abm \in N$, then $am \in \text{rad}(N)$ or $bm \in \text{rad}(N)$ or $ab \in (N :_R M)$ [11].

Theorem 2.10. Let M be a multiplication R-module and N be a G_2-absorbing submodule of M. Then N is a 2-absorbing primary submodule of M.

Proof. Let $a, b \in R$, $m \in M$, and $abm \in N$. Then we have $a^t m \in N$ for some positive integer t or $b^s m \in N$ for some positive integer s or $abm \in N$. If $abm \subseteq N$, then we are done. Suppose that $a^t m \in N$ for some positive integer t. As M is a multiplication R-module, $Rm = IM$ for some ideal I of R. Thus $a^t IM \subseteq N$. This implies that $Ia \subseteq \sqrt{(N :_R M)}$. Thus

$$aRm = aIM \subseteq \sqrt{(N :_R M)}M \subseteq (\text{rad}(N) :_R M)M \subseteq \text{rad}(N).$$

Hence $am \in \text{rad}(N)$, as needed. □

Corollary 2.11. Let M be a finitely generated multiplication R-module. If N is a G_2-absorbing submodule of M, then $\text{rad}(N)$ is a 2-absorbing submodule of M.

Proof. By Theorem 2.10, N is a is a 2-absorbing primary submodule of M. Now the result follows from [11, 2.6]. □
Proposition 2.12. Let N be a $G2$-absorbing submodule of an R-module M. Then $(N :_M r)$ is a $G2$-absorbing submodule of M containing N for any $r \in R \setminus (N :_R M)$.

Proof. Let $r \in R \setminus (N :_R M)$. Suppose that $a, b \in R$ and $m \in M$ such that $abm \in (N :_M r)$. Then $rabm \in N$. Since N is a $G2$-absorbing submodule of M, either $a^s rm \in N$ or $b^s rm \in N$ for some $t, s \in \mathbb{N}$ or $ab \in (N :_R M)$. Thus $a^t m \in (N :_M r)$ or $b^t m \in (N :_M r)$ or $ab \in (N :_R M) \subseteq ((N :_M r) :_R M)$ as required.

Proposition 2.13. Let M and \hat{M} be R-modules and $f : M \rightarrow \hat{M}$ be an epimorphism. Then we have the following.

(a) If N is a $G2$-absorbing submodule of M such that $\ker(f) \subseteq N$, then $f(N)$ is a $G2$-absorbing submodule of \hat{M}.

(b) If \hat{N} is a $G2$-absorbing submodule of \hat{M}, then $f^{-1}(\hat{N})$ is a $G2$-absorbing submodule of M.

Proof. (a) If $f(N) = \hat{M}$, then
\[\ker(f) + N = f^{-1}(f(N)) = f^{-1}(\hat{M}) = f^{-1}(f(M)) = M. \]
Thus $N = M$ a contradiction. Hence $f(N) \neq \hat{M}$. Now let $a, b \in R$ and $y \in \hat{M}$ such that $aby \in f(N)$. Then there exists $n \in N$ such that $aby = f(n)$. Since f is an epimorphism, we have $f(m) = y$ for some $m \in M$. Thus $abf(m) = f(n)$. This implies that $f(abm - n) = 0$ which gives that $abm - n \in \ker(f) \subseteq N$. So $abm \in N$. Since N is a $G2$-absorbing submodule of M, $a^t m \in N$ or $b^t m \in N$ for some $t, s \in \mathbb{N}$ or $ab \in (N :_R M)$. Therefore, $a^t y \in f(N)$ or $b^t y \in f(N)$ or $ab \in (f(N) :_R \hat{M})$. Thus $f(N)$ is a $G2$-absorbing submodule of M.

(b) If $f^{-1}(\hat{N}) = M$, then
\[f(M) \cap \hat{N} = f(f^{-1}(\hat{N})) = f(M) = \hat{M}. \]
Thus $\hat{N} = \hat{M}$ a contradiction. Hence $f^{-1}(\hat{N}) \neq M$. Now let $a, b \in R$ and $m \in M$ such that $abm \in f^{-1}(\hat{N})$. Then $abf(m) \in f(f^{-1}(\hat{N})) = \hat{N}$. Since \hat{N} is a $G2$-absorbing submodule of \hat{M}, $a^t f(m) \in \hat{N}$ or $b^t f(m) \in \hat{N}$ for some $t, s \in \mathbb{N}$ or $abM \subseteq \hat{N}$. Therefore, $a^t m \in f^{-1}(\hat{N})$ or $b^t m \in f^{-1}(\hat{N})$ or $abM \subseteq f^{-1}(\hat{N})$. Thus $f^{-1}(\hat{N})$ is a $G2$-absorbing submodule of M.

Recall that the set of zero divisors of an R-module M; denoted by $Z(M)$ is defined by $Z(M) = \{ r \in R : \exists x \in M, rx = 0 \}$.

Theorem 2.14. Let S be a multiplicatively closed subset of R and $S^{-1}M$ be the module of fraction of an R-module M. Then the we have the following.
If \(N \) is a \(G_{2} \)-absorbing submodule of \(M \) such that \((N :_{R} M) \cap S = \emptyset\), then \(S^{-1}N \) is a \(G_{2} \)-absorbing submodule of \(S^{-1}M \).

(b) If \(S^{-1}N \) is a \(G_{2} \)-absorbing submodule of \(S^{-1}M \) such that \(Z(M/N) \cap S = \emptyset \), then \(N \) is a \(G_{2} \)-absorbing submodule of \(M \).

Proof. (a) Assume that \(a, b \in R, s, t, l \in S, m \in M \) and \((a/s)(b/t)(m/l) \in S^{-1}N \) which implies \(uabm \in N \) for some \(u \in S \). Since \(N \) is a \(G_{2} \)-absorbing submodule of \(M \), \(a^{p}um \in N \) or \(b^{q}um \in N \) for some \(p, q \in \mathbb{N} \) or \(ab \in (N :_{R} M) \). Hence \((a/s)^{p}(m/l) = (a^{p}mu)/(s^{p}lu) \in S^{-1}N \) or \((b/t)^{q}(m/l) = (b^{q}mu)/(t^{q}lu) \in S^{-1}N \) since \(ab/st \in S^{-1}(N :_{R} M) \subseteq (S^{-1}N :_{S^{-1}R} S^{-1}M) \). Therefore, \(S^{-1}N \) is a \(G_{2} \)-absorbing submodule of \(S^{-1}M \).

(b) First note that \((S^{-1}N :_{S^{-1}R} S^{-1}M) = S^{-1}(N :_{R} M) \) because \(Z(M/N) \cap S = \emptyset \). Let \(a, b \in R \) and \(m \in M \) be such that \(abm \in N \). Then \(abm/1 \in S^{-1}N \). Since \(S^{-1}N \) is a \(G_{2} \)-absorbing submodule of \(S^{-1}M \), either \((a/1)^{p}(m/1) \in S^{-1}N \) or \((b/1)^{q}(m/1) \in S^{-1}N \) for some \(p, q \in \mathbb{N} \) or \(ab/1 \in (S^{-1}N :_{S^{-1}R} S^{-1}M) \) if \(ab/1 \in (S^{-1}N :_{S^{-1}R} S^{-1}M) \), then \(ab/1 \in S^{-1}(N :_{R} M) \) and we are done. Otherwise, there exists \(s \in S \) such that \(sa^{p}m = N \) or \(b^{q}m \in N \). This implies \(a^{p}m \in N \) or \(b^{q}m \in N \), since \(S \cap Z(M/N) = \emptyset \). Hence \(N \) is a \(G_{2} \)-absorbing submodule of \(M \).

\[\square \]

3 \ G_{2} \)-Absorbing submodules over Noetherian rings

A submodule \(N \) of an \(R \)-module \(M \) is said to be idempotent if \(N = (N :_{R} M)^{2}M \). Also, \(M \) is said to be fully idempotent if every submodule of \(M \) is idempotent [1]. Clearly, every fully idempotent \(R \)-module is a multiplication \(R \)-module.

Theorem 3.1. Let \(R \) be a Noetherian ring and \(N \) be a submodule of a fully idempotent \(R \)-module \(M \). If \((N :_{R} M) \) is a \(2 \)-absorbing primary ideal of \(R \), then \(N \) is a \(G_{2} \)-absorbing submodule of \(M \).

Proof. Let \(a, b \in R, K \) be a submodule of \(M \), and \(abK \subseteq N \). Then we have \(ab(K :_{R} M)M \subseteq N \). Thus by [4, 2.18], either \(a(K :_{R} M)M \subseteq \sqrt{(N :_{R} M)} \) or \(b(K :_{R} M)M \subseteq \sqrt{(N :_{R} M)} \) and \(ab \in (N :_{R} M) \) since \((N :_{R} M) \) is a \(2 \)-absorbing primary ideal of \(R \). If \(ab \in (N :_{R} M) \), then we are done. Otherwise, since \(R \) is Noetherian, \((a(K :_{R} M))^{t}M \subseteq N \) for some positive integer \(t \) or \((b(K :_{R} M))^{s}M \subseteq N \) for some positive integer \(s \). Thus \((a(K :_{R} M))^{t}M \subseteq N \) or \((b(K :_{R} M))^{s}M \subseteq N \) since \((N :_{R} M) \) is a \(2 \)-absorbing primary ideal of \(R \). If \(ab \in (N :_{R} M) \), then we are done. Otherwise, \(a(K :_{R} M)^{t}M \subseteq N \) or \(b(K :_{R} M)^{s}M \subseteq N \) since \((N :_{R} M)M = N \) by multiplication \(R \)-module. Hence, \(a^{t}K \subseteq N \) or \(b^{s}K \subseteq N \) since \(M \) is a fully idempotent \(R \)-module. Therefore, \(N \) is a \(G_{2} \)-absorbing submodule of \(M \).

\[\square \]
The following example shows that Theorem 3.1 (a) is not satisfied in general.

Example 3.2. The \(Z \)-module \(M = \mathbb{Q} \) is not a fully idempotent \(Z \)-module. Set \(N = \mathbb{Z} \). Then we have 3.2. (1/6) \(\in \mathbb{Z} \) while 3.2. (1/6) \(\notin \mathbb{Z} \), 2.3. (1/6) \(\notin \mathbb{Z} \), and 2.3 \(\notin (\mathbb{Z} :_{\mathbb{Z}} \mathbb{Q}) = 0 \) for all \(i, j \in \mathbb{N} \). Thus the submodule \(N \) of \(M \) is not \(G2 \)-absorbing submodule. But \((N :_{\mathbb{Z}} M) = 0 \) is a 2-absorbing primary ideal of \(Z \).

Let \(R_i \) be a commutative ring with identity and \(M_i \) be an \(R_i \)-module, for \(i = 1, 2 \). Let \(R = R_1 \times R_2 \). Then \(M = M_1 \times M_2 \) is an \(R \)-module and each submodule of \(M \) is in the form of \(N = N_1 \times N_2 \) for some submodules \(N_1 \) of \(M_1 \) and \(N_2 \) of \(M_2 \).

Lemma 3.3. Let \(R = R_1 \times R_2 \) and \(M = M_1 \times M_2 \). Then \(M_i \) is a fully idempotent \(R_i \)-module, for \(i = 1, 2 \) if and only if \(M \) is a fully idempotent \(R \)-module.

Proof. First suppose that \(M \) is a fully idempotent \(R \)-module and \(N_1 \) is a submodule of an \(R_1 \)-module \(M_1 \). Then \(N = N_1 \times 0 \) is a submodule of \(M \). Thus \(N = (N :_R M)^2 M = (N_1 :_{R_1} M_1)^2 M_1 \times (0 :_{R_2} M_2)^2 M_2 \). Hence \(N_1 = (N_1 :_{R_1} M_1)^2 M_1 \). Therefore, \(M_1 \) is a fully idempotent \(R_1 \)-module. Similarly, \(M_2 \) is a fully idempotent \(R_2 \)-module. Conversely, let \(N \) be a submodule of \(M \). Then \(N = N_1 \times N_2 \) for some submodules \(N_1 \) of \(M_1 \) and \(N_2 \) of \(M_2 \). By assumption, \(N_i = (N_i :_{R_i} M_i)^2 M_i \) for \(i = 1, 2 \). So

\[
N = (N_1 :_{R_1} M_1)^2 M_1 \times (N_2 :_{R_2} M_2)^2 M_2 = (N :_R M)^2 M,
\]

as request.

Theorem 3.4. Let \(R = R_1 \times R_2 \) be a Noetherian ring and \(M = M_1 \times M_2 \), where \(M_1 \) is a fully idempotent \(R_1 \)-module and \(M_2 \) is a fully idempotent \(R_2 \)-module. Then we have the following.

(a) A proper submodule \(K_1 \) of \(M_1 \) is a \(G2 \)-absorbing submodule if and only if \(N = K_1 \times M_2 \) is a \(G2 \)-absorbing submodule of \(M \).

(b) A proper submodule \(K_2 \) of \(M_2 \) is a \(G2 \)-absorbing submodule if and only if \(N = M_1 \times K_2 \) is a \(G2 \)-absorbing submodule of \(M \).

(c) If \(K_1 \) is a primary submodule of \(M_1 \) and \(K_2 \) is a primary submodule of \(M_2 \), then \(N = K_1 \times K_2 \) is a \(G2 \)-absorbing submodule of \(M \).

Proof. (a) Let \(K_1 \) be a \(G2 \)-absorbing submodule of \(M_1 \). Then \((K_1 :_{R_1} M_1) \) is a 2-absorbing primary ideal of \(R_1 \) by Proposition 2.7. Now since \((N :_{R} M) \)
Generalized 2-absorbing submodules

Let

Conversely, let \(N = K_1 \times M_2 \) be a G2-absorbing submodule of \(M \). Then
\[(N :_{R} M) = (K_1 :_{R_1} M_1) \times R_2 \] is a primary ideal of \(R \) by Proposition 2.7. Thus \((K_1 :_{R_1} M_1) \) is a primary ideal of \(R_1 \) by [4, 2.23]. Hence by Theorem 3.1, \(K_1 \) is a G2-absorbing submodule of \(M_1 \).

(b) This is proved similar to the part (a).
(c) Let \(K_1 \) be a primary submodule of \(M_1 \) and \(K_2 \) be a primary submodule of \(M_2 \). Then \((K_1 :_{R_1} M_1) \) and \((K_2 :_{R_2} M_2) \) are primary ideals of \(R_1 \) and \(R_2 \), respectively. Now since
\[(N :_{R} M) = (K_1 :_{R_1} M_1) \times (K_2 :_{R_2} M_2) \]
we have \((N :_{R} M) \) is a 2-absorbing primary ideal of \(R \) by [4, 2.23]. Thus the result follows from Theorem 3.1.

\[\square \]

Theorem 3.5. Let \(R = R_1 \times R_2 \) be a Noetherian ring and \(M = M_1 \times M_2 \) be a fully idempotent \(R \)-module, where \(M_1 \) is an \(R_1 \)-module and \(M_2 \) is an \(R_2 \)-module. Suppose that \(N = N_1 \times N_2 \) is a proper submodule of \(M \). Then the following conditions are equivalent:

(a) \(N \) is a G2-absorbing submodule of \(M \);

(b) Either \(N_1 = M_1 \) and \(N_2 = M_2 \) and \(N_1 \) is a G2-absorbing submodule of \(M_1 \) or \(N_1, N_2 \) are primary submodules of \(M_1, M_2 \), respectively.

Proof.
(a) \(\Rightarrow \) (b). Let \(N = N_1 \times N_2 \) be a G2-absorbing submodule of \(M \). Then
\[(N :_{R} M) = (K_1 :_{R_1} M_1) \times (K_2 :_{R_2} M_2) \]
is a 2-absorbing primary ideal of \(R \) by Proposition 2.7. By [4, 2.23], we have \((K_1 :_{R_1} M_1) = R_1 \) and \((K_2 :_{R_2} M_2) \) is a 2-absorbing primary ideal of \(R_2 \) or \((K_2 :_{R_2} M_2) = R_2 \) and \((K_1 :_{R_1} M_1) \) is a 2-absorbing primary ideal of \(R_1 \) or \((K_1 :_{R_1} M_1) \) and \((K_2 :_{R_2} M_2) \) are primary ideals of \(R_1 \) and \(R_2 \), respectively. Suppose that \((K_1 :_{R_1} M_1) = R_1 \) and \((K_2 :_{R_2} M_2) = R_2 \). Then \(N_1 = M_1 \) and \(N_2 = M_2 \) is a G2-absorbing submodule of \(M_2 \) by Theorem 3.4 and Lemma 3.3. Similarly if \((K_2 :_{R_2} M_2) = R_2 \) and \((K_1 :_{R_1} M_1) \) is a 2-absorbing primary ideal of \(R_1 \). Then \(N_2 = M_2 \) and \(N_1 \) is a G2-absorbing submodule of \(M_1 \). If the last case hold, then as \(M_1 \) (resp. \(M_2 \)) is a multiplication \(R_1 \)-(resp. \(R_2 \)) module, \(N_1 \) (resp. \(N_2 \)) is a primary submodule of \(M_1 \) (resp. \(M_2 \)) by [8, Corollary 2].

(b) \(\Rightarrow \) (a). This can be proved easily by using Theorem 3.4. \(\square \)

Theorem 3.6. Let \(R \) be a Noetherian ring, \(N \) be a G2-absorbing submodule of an \(R \)-module \(M \), and \(m \in M \setminus N \). Then \((N :_{R} m) \) is a prime ideal of \(R \) or there exists an element \(a \in R \) such that \((N :_{R} a^n m) \) is a prime ideal of \(R \) for some positive integer \(n \).
Proof. By Corollary 2.8, \(\sqrt{(N : R M)} \) is a 2-absorbing ideal of \(R \), therefore by [4, Theorem 2.3], we have either \(\sqrt{(N : R M)} = p \) or \(\sqrt{(N : R M)} = p \cap q \), where \(p \) and \(q \) are distinct prime ideals of \(R \). Suppose that \(\sqrt{(N : R M)} = p \). Then \(p = \sqrt{(N : R M)} \subseteq \sqrt{(N : R m)} \). We show that \(\sqrt{(N : R m)} \) is a prime ideal of \(R \). Let \(ab \in \sqrt{(N : R m)} \) for some \(a, b \in R \). Then \((ab)^n \in (N : R m) \) implies \((ab)^m \in N \). As \(N \) is a G2-absorbing submodule of \(M \), then either \(a^m \in N \) or \(b^m \in N \) for some \(t, s \in \mathbb{N} \) or \((ab)^m \in (N : R m) \). If \(a^m \in N \) or \(b^m \in N \), then \(a \in \sqrt{(N : R m)} \) or \(b \in \sqrt{(N : R m)} \). If \((ab)^m \in (N : R M) \), then \(ab \in p \). Since \(p \) is prime ideal of \(R \), then either \(a \in p \subseteq \sqrt{(N : R m)} \) or \(b \in p \subseteq \sqrt{(N : R m)} \). Therefore, \(\sqrt{(N : R m)} \) is a prime ideal of \(R \). Now suppose that \(\sqrt{(N : R M)} = p \cap q \). If \(p \not\subseteq \sqrt{(N : R m)} \), then by previous argument, we have \(\sqrt{(N : R m)} \) is a prime ideal of \(R \). If \(p \not\subseteq \sqrt{(N : R m)} \), then there exists \(a \in p \setminus \sqrt{(N : R m)} \). Also,

\[
pq \subseteq \sqrt{pq} = \sqrt{p \cap q} = \sqrt{(N : R M)} \subseteq \sqrt{(N : R m)}.
\]

Now since \(R \) is Noetherian, there exists \(n \in \mathbb{N} \) such that \((pq)^n \subseteq (N : R m) \). This implies that \(q \subseteq \sqrt{(N : R a^m)} \) and the result follows by a similar argument. \(\square \)

Now, we study G2-absorbing avoidance Theorem for submodules. We first define an efficient covering of submodules: let \(N, N_1, N_2, ..., N_n \) be submodules of an \(R \)-module \(M \). An efficient covering of \(N \) is a covering \(N \subseteq N_1 \cup N_2 \cup ... \cup N_n \) in which no \(N_k \) (where \(1 \leq k \leq n \)) satisfies \(N \subseteq N_k \). In other words, a covering \(N \subseteq N_1 \cup N_2 \cup ... \cup N_n \) is efficient if no \(N_k \) is superfluous. Analogously, we say that \(N = N_1 \cup N_2 \cup ... \cup N_n \) is an efficient union if none of the \(N_i \) may be excluded. Any cover or union consisting of submodules of \(M \) can be reduced to an efficient one, called an efficient reduction, by deleting any unnecessary terms.

To proceed further, we require the following lemma.

Lemma 3.7. [9, Lemma 2.1]. Let \(N = N_1 \cup ... \cup N_n \) be an efficient union of submodules of an \(R \)-module \(M \) for \(n > 1 \). Then \(\cap_{j \neq k} N_j = \cap_{j=1}^n N_j \) for all \(k \).

Theorem 3.8. Let \(R \) be a Noetherian ring and \(N \subseteq N_1 \cup N_2 \cup ... \cup N_n \) be an efficient covering consisting of submodules of an \(R \)-module \(M \), where \(n > 2 \). If \(\sqrt{(N_j : R M)} \not\subseteq \sqrt{(N_k : R m)} \) for all \(m \in M \setminus N_k \) whenever \(j \neq k \), then no \(N_i \) is a G2-absorbing submodule of \(M \).

Proof. Suppose \(N_k \) is a G2-absorbing submodule of \(M \) for some \(1 \leq k \leq n \), and look for a contradiction. Since \(N \subseteq N_1 \cup N_2 \cup ... \cup N_n \) is an efficient covering, \(N \not\subseteq N_k \), so there exists an element \(m_k \in N \setminus N_k \). It is clear
that \(N = (N_1 \cap N) \cup (N_2 \cap N) \cup \ldots \cup (N_n \cap N) \) is an efficient union. By Lemma 3.7, we have \(\cap_j \neq k (N \cap N_j) \subseteq N \cap N_k \). By using Theorem 3.6, we have either \(\sqrt{(N_k : R \ m_k)} \) is a prime ideal of \(R \) or there exists \(a \in R \) such that \(\sqrt{(N_k : R \ a^m m_k)} \) is a prime ideal of \(R \). First, suppose that \(\sqrt{(N_k : R \ m_k)} \) is a prime ideal. By the given hypothesis \(\sqrt{(N_j : R \ M)} \nsubseteq \sqrt{(N_k : R \ m_k)} \) for \(j \neq k \). So, there exists \(s_j \in \sqrt{(N_j : R \ M)} \) but \(s_j \notin (\sqrt{N_k : R \ m_k}) \), where \(j \neq k \). This implies that \(s_j^{n_j} \in (N_j : R \ M) \) but \(s_j^{n_j} \notin (N_k : R \ m_k) \) where \(j \neq k \) and \(n_j \in \mathbb{N} \). Let \(s = \prod_{j \neq k} s_j \). Then \(s \in \sqrt{(N_j : R \ M)} \) but \(s \notin \sqrt{(N_k : R \ m_k)} \) where \(j \neq k \). Therefore, \(s^m \in (N_j : R \ M) \) for all \(j \neq k \) but \(s^m \notin (N_k : R \ m_k) \), where \(m = \max\{n_1, n_2, \ldots, n_k-1, n_k+1, \ldots, n_n\} \). Thus \(s^m m_k \in \cap_j \neq k (N \cap N_j) \setminus (N \cap N_k) \), since \(s^m m_k \in N \cap N_k \) implies \(s^m \in (N_k : R \ m_k) \), a contradiction. So, no \(N_k \) is a \(G2 \)-absorbing submodule of \(M \). Now, consider the case when \(\sqrt{(N_k : R \ a^m m_k)} \) is a prime ideal, where \(n \) is positive integer and \(a \in R \). Clearly, \(s_j \in \sqrt{(N_j : R \ M)} \) but \(s_j \notin \sqrt{(N_k : R \ a^m m_k)} \), where \(j \neq k \). Therefore, \(s^m a^m m_k \in \cap_j \neq k (N \cap N_j) \setminus (N \cap N_k) \), since \(s^m a^m m_k \in N \cap N_k \) implies \(s^m \in (N_k : R \ a^m m_k) \), a contradiction. So, no \(N_k \) is \(G2 \)-absorbing submodule of \(M \).

Theorem 3.9. (\(G2 \)-Absorbing Avoidance Theorem). Let \(R \) be a Noetherian ring and \(N, N_1, \ldots, N_n \) (\(n \geq 2 \)) be submodules of an \(R \)-module \(M \) such that at most two of \(N_1, N_2, \ldots, N_n \) are \(G2 \)-absorbing submodules. If \(N \subseteq N_1 \cup N_2 \cup \ldots \cup N_n \) and \(\sqrt{(N_j : R \ M)} \nsubseteq \sqrt{(N_k : R \ m)} \) for all \(m \in M \setminus N_k \) whenever \(j \neq k \), then \(N \subseteq N_i \) for some \(1 \leq i \leq n \).

Proof. If \(n = 2 \), then it is obvious. Now, take \(n > 2 \) and \(N \nsubseteq N_i \) for all \(1 \leq i \leq n \). Then \(N \subseteq N_1 \cup N_2 \cup \ldots \cup N_n \) is an efficient covering. Using Theorem 3.8, no \(N_i \) is a \(G2 \)-absorbing submodule, which is a contradiction. Hence \(N \subseteq N_i \) for some \(1 \leq i \leq n \).

Acknowledgments. The authors would like to thank the referee for his/her helpful comments.

References

F. Farshadifar,
Assistant Professor, Department of Mathematics,
Farhangian University, Tehran, Iran.
E-mail: f.farshadifar@cfu.ac.ir
H. Ansari-Toroghy,
Department of pure Mathematics,
Faculty of Mathematical Sciences,
University of Guilan, P. O. Box 41335-19141, Rasht, Iran.
Email: ansari@guilan.ac.ir