THE ORDER OF CONVEXITY OF SOME INTEGRAL OPERATORS

Vasile Marius Macarie and Daniel Breaz

Abstract. In this paper we consider the classes of starlike functions of order \(\alpha \), convex functions of order \(\alpha \) and we study the convexity and \(\alpha \)-order convexity for some general integral operators. Several corollaries of the main results are also considered.

2000 Mathematics Subject Classification: 30C45.

Key words: analytic function, integral operator, open unit disk, convexity.

1. Introduction

We consider the unit open disk of the complex plane denoted by \(U \), \(U = \{ z : |z| < 1 \} \) and let \(A \) be the class of holomorphic functions in \(U \) of the form:

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n,
\]

which are analytic in \(U \). We denote by \(S \) the class of univalent functions in the unit disk.

A function \(f(z) \in S \) is a starlike of order \(\alpha \) if it satisfies

\[
\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > \alpha, \quad (z \in U)
\]

for some \(\alpha \) (0 \leq \alpha < 1). We denote by \(S^*(\alpha) \) the subclass of \(A \) consisting of the functions which are starlike of order \(\alpha \) in \(U \). For \(\alpha = 0 \) we obtain the class of starlike functions, denoted by \(S^* \).
A function \(f(z) \in S \) is convex of order \(\alpha \) if it satisfies
\[
\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha, \quad (z \in U)
\]
for some \(\alpha \) \((0 \leq \alpha < 1)\). We denote by \(K(\alpha) \) the subclass of \(A \) consisting of the functions which are convex of order \(\alpha \) in \(U \). For \(\alpha = 0 \) we obtain the class of convex functions, denoted by \(K \).

A function \(f \in A \) is in the class \(R(\alpha) \) if \(\text{Re}(f'(z)) > \alpha \), \((z \in U)\).

Recently, Frasin and Jahangiri in [3] define the family \(B(\mu, \alpha) \), \(\mu \geq 0 \), \(0 \leq \alpha < 1 \) so that it consists of functions \(f \in A \) satisfying the condition
\[
\left| f'(z) \left(\frac{z}{f(z)} \right)^\mu - 1 \right| < 1 - \alpha, \quad (z \in U).
\]

In this paper we will obtain the order of convexity of the following integral operators:
\[
G_\gamma(z) = \int_0^z \left(te^{f(t)} \right)^{\frac{1}{\gamma}} dt,
\]
\[
G_{n,\gamma}(z) = \int_0^z \prod_{i=1}^n \left(te^{f_i(t)} \right)^{\frac{1}{\gamma}} dt,
\]
\[
H_{n,\gamma}(z) = \int_0^z \prod_{i=1}^n \left(te^{f_i(t)} \right)^{\frac{1}{\gamma_i}} dt,
\]
and
\[
H_n(z) = \int_0^z \prod_{i=1}^n \left(te^{f_i(t)} \right)^{\gamma_i} dt,
\]
where the functions \(f_i \) for all \(i = 1, 2, ..., n \) and \(f \) are in \(B(\mu, \alpha) \).

Lemma 1. (General Schwarz Lemma).[5] Let the function \(f \) be regular in the disk \(U_R = \{ z \in \mathbb{C} : |z| < R \} \), with \(|f(z)| < M \) for fixed \(M \). If \(f \) has one zero with multiplicity order bigger than \(m \) for \(z = 0 \), then
\[
|f(z)| \leq \frac{M}{R^m} \cdot |z|^m \quad (z \in U_R).
\]
The equality can hold only if
\[
f(z) = e^{i\theta} \cdot \frac{M}{R^m} \cdot z^m,
\]
where \(\theta \) is constant.
Theorem 1. [4]. Let $f \in A$ be in the class $B(\mu, \alpha)$, $\mu \geq 0$, $0 \leq \alpha < 1$. If $|f(z)| \leq M$ ($M \geq 1$, $z \in U$) then the integral operator

$$G(z) = \int_{0}^{z} \left(te^{f(t)} \right)^{\gamma} \, dt$$

(9)

is in $K(\delta)$, where

$$\delta = 1 - |\gamma| \left[(2 - \alpha)M^{\mu} + 1 \right]$$

(10)

and $|\gamma| < \frac{1}{(2 - \alpha)M^{\mu} + 1}$, $\gamma \in \mathbb{C}$.

2. Main results

Theorem 2. Let $f \in A$ be in the class $B(\mu, \alpha)$, $\mu \geq 0$, $0 \leq \alpha < 1$. If $|f(z)| \leq M$ ($M \geq 1$, $z \in U$) then the integral operator

$$G_\gamma(z) = \int_{0}^{z} \left(te^{f(t)} \right)^{\frac{1}{\gamma}} \, dt$$

(11)

is in $K(\delta)$, where

$$\delta = 1 - \frac{1}{|\gamma|} \left[(2 - \alpha)M^{\mu} + 1 \right]$$

(12)

and $\frac{1}{|\gamma|} < \frac{1}{(2 - \alpha)M^{\mu} + 1}$, $\gamma \in \mathbb{C} \setminus \{0\}$.

Proof. Let $f \in A$ be in the class $B(\mu, \alpha)$, $\mu \geq 0$, $0 \leq \alpha < 1$. It follows from (11) that

$$G'_\gamma(z) = \left(ze^{f(z)} \right)^{\frac{1}{\gamma}}$$

and

$$G''_\gamma(z) = \frac{1}{\gamma} \left(ze^{f(z)} \right)^{\frac{1}{\gamma} - 1} \left(e^{f(z)} + ze^{f(z)} f'(z) \right).$$

Then $G''_\gamma(z) / G'_\gamma(z) = \frac{1}{\gamma} \left(\frac{1}{z} + f'(z) \right)$ and, hence

$$\left| \frac{zG''_\gamma(z)}{G'_\gamma(z)} \right| = \frac{1}{|\gamma|} \left(|1 + zf'(z)| \right) \leq \frac{1}{|\gamma|} \left(1 + |f'(z)| \left(\frac{z}{f(z)} \right)^{\mu} \cdot \left(\frac{f(z)}{z} \right)^{\nu} \cdot |z| \right).$$

(13)

Applying the General Schwarz lemma, we have $\left| \frac{f(z)}{z} \right| \leq M$, ($z \in U$). Therefore, from (13), we obtain

$$\left| \frac{zG''_\gamma(z)}{G'_\gamma(z)} \right| \leq \frac{1}{|\gamma|} \left(1 + |f'(z)| \left(\frac{z}{f(z)} \right)^{\mu} \cdot M^{\mu} \right), \quad z \in U.$$

(14)
From (4) and (14), we see that
\[\left| \frac{zG''(z)}{G'(z)} \right| \leq \frac{1}{|\gamma|} [(2 - \alpha)M^{\mu} + 1] = 1 - \delta. \]

Letting \(\mu = 0 \) in Theorem 2, we have \(B(0, \alpha) \equiv R(\alpha) \) and we obtain next corollary.

Corollary 1. Let \(f \in \mathcal{A} \) be in the class \(R(\alpha) \), \(0 \leq \alpha < 1 \). Then the integral operator
\[\int_0^z \left(te^{f(t)} \right)^{\frac{1}{2}} dt \in K(\delta), \]
where
\[\delta = 1 - \frac{1}{|\gamma|} (3 - \alpha) \tag{15} \]
and \(\frac{1}{|\gamma|} < \frac{1}{3 - \alpha}, \gamma \in \mathbb{C} \setminus \{0\}. \)

Letting \(\mu = 1 \) in Theorem 2, we have \(B(1, \alpha) \equiv S^\ast(\alpha) \) and we obtain next corollary.

Corollary 2. Let \(f \in \mathcal{A} \) be in the class \(S^\ast(\alpha) \), \(0 \leq \alpha < 1 \). If \(|f(z)| \leq M \) \((M \geq 1, z \in U)\) then the integral operator
\[\int_0^z \left(te^{f(t)} \right)^{\frac{1}{2}} dt \in K(\delta), \]
where
\[\delta = 1 - \frac{1}{|\gamma|} [(2 - \alpha)M + 1] \tag{16} \]
and \(\frac{1}{|\gamma|} < \frac{1}{(2 - \alpha)M + 1}, \gamma \in \mathbb{C} \setminus \{0\}. \)

Letting \(\alpha = \delta = 0 \) in Corollary 2, we have

Corollary 3. Let \(f \in \mathcal{A} \) be a starlike function in \(U \). If \(|f(z)| \leq M \) \((M \geq 1, z \in U)\) then the integral operator \(\int_0^z \left(te^{f(t)} \right)^{\frac{1}{2}} dt \) is convex in \(U \), where \(\frac{1}{|\gamma|} = \frac{1}{2M + 1}, \gamma \in \mathbb{C} \setminus \{0\}. \)
Theorem 3. Let \(f_i(z) \in A \) be in the class \(B(\mu, \alpha) \), \(\mu \geq 0 \), \(0 \leq \alpha < 1 \) for all \(i = 1, 2, \ldots, n \). If \(|f_i(z)| \leq M_i \) \((M_i \geq 1, \ z \in U) \) for all \(i = 1, 2, \ldots, n \), then the integral operator

\[
G_{n, \gamma}(z) = \int_0^z \prod_{i=1}^n \left(te^{t_i(t)}\right)^\gamma dt
\]

is in \(K(\delta) \), where

\[
\delta = 1 - |\gamma| \left[n + (2 - \alpha) \sum_{i=1}^n M_i^\mu\right]
\]

(17)

and \(|\gamma| < 1 + (2 - \alpha) \sum_{i=1}^n M_i^\mu \), \(\gamma \in \mathbb{C} \).

Proof. Let \(f_i \in A \) be in the class \(B(\mu, \alpha) \), \(\mu \geq 0 \), \(0 \leq \alpha < 1 \). It follows from (6) that

\[
G_{n, \gamma}(z) = \int_0^z t^n e^{\sum_{i=1}^n f_i(t)} dt \quad \text{and} \quad G'_{n, \gamma}(z) = z^n e^{\sum_{i=1}^n f_i(z)}.
\]

Also

\[
G''_{n, \gamma}(z) = \gamma \left(\frac{z^n}{e^{z}} \sum_{i=1}^n f_i(z)\right)^{\gamma-1} \cdot \sum_{i=1}^n e^{f_i(z)} \left(n + z \sum_{i=1}^n f_i'(z)\right)
\]

Then

\[
\frac{G''_{n, \gamma}(z)}{G'_{n, \gamma}(z)} = \gamma \left(\frac{n}{z} + \sum_{i=1}^n f_i'(z)\right)
\]

and, hence

\[
\left|\frac{zG''_{n, \gamma}(z)}{G'_{n, \gamma}(z)}\right| = |\gamma| \left|n + z \sum_{i=1}^n f_i'(z)\right| \leq |\gamma| \sum_{i=1}^n \left|1 + zf_i'(z)\right|
\]

\[
\leq |\gamma| \sum_{i=1}^n \left[1 + \left|f_i'(z)\left(\frac{z}{f_i(z)}\right)^\mu\right| \cdot \left|\left(\frac{M_i^\mu}{z}\right)\right| \cdot |z|\right].
\]

(18)

Applying the General Schwarz lemma, we have \(\left|\frac{f_i(z)}{z}\right| \leq M_i \), for all \(i = 1, 2, \ldots, n \).

Therefore, from (18), we obtain

\[
\left|\frac{zG''_{n, \gamma}(z)}{G'_{n, \gamma}(z)}\right| \leq |\gamma| \sum_{i=1}^n \left[1 + \left|f_i'(z)\left(\frac{z}{f_i(z)}\right)^\mu\right| \cdot M_i^\mu\right], \ (z \in U).
\]

(19)
From (4) and (19), we see that
\[
\left| \frac{zG''_{n,\gamma}(z)}{G'_{n,\gamma}(z)} \right| \leq |\gamma| \left[n + (2 - \alpha) \sum_{i=1}^{n} M_i^\mu \right] = 1 - \delta.
\]

This completes the proof.

For \(M_1 = M_2 = \ldots = M_n = M \) we have

Corollary 4. Let \(f_i(z) \in A \) be in the class \(B(\mu, \alpha) \), \(\mu \geq 0 \), \(0 \leq \alpha < 1 \) for all \(i = 1, 2, \ldots, n \). If \(|f_i(z)| \leq M \) \((M \geq 1, \ z \in U) \) for all \(i = 1, 2, \ldots, n \), then the integral operator
\[
G_{n,\gamma}(z) = \int_0^z \prod_{i=1}^{n} \left(te^{f_i(t)} \right)^\gamma dt
\]
is in \(K(\delta) \), where
\[
\delta = 1 - |\gamma| \left[n(1 + (2 - \alpha)M^\mu) \right]
\]
and \(|\gamma| < \frac{1}{n[1 + (2 - \alpha)M^\mu]} \), \(\gamma \in \mathbb{C} \).

Letting \(\mu = 0 \) in Corollary 4, we have

Corollary 5. Let \(f_i(z) \in A \) be in the class \(R(\alpha) \), \(0 \leq \alpha < 1 \) for all \(i = 1, 2, \ldots, n \). Then the integral operator defined in (6) is in \(K(\delta) \), where
\[
\delta = 1 - |\gamma|n(3 - \alpha)
\]
and \(|\gamma| < \frac{1}{n(3 - \alpha)} \), \(\gamma \in \mathbb{C} \).

Letting \(\mu = 1 \) in Corollary 4, we have

Corollary 6. Let \(f_i \in A \) be in the class \(S^*(\alpha) \), \(0 \leq \alpha < 1 \) for all \(i = 1, 2, \ldots, n \). If \(|f_i(z)| \leq M \) \((M \geq 1, \ z \in U) \) for all \(i = 1, 2, \ldots, n \), then the integral operator defined in (6) is in \(K(\delta) \), where
\[
\delta = 1 - |\gamma|[n(1 + (2 - \alpha)M)]
\]
and \(|\gamma| < \frac{1}{n[1 + (2 - \alpha)M]} \), \(\gamma \in \mathbb{C} \).

Letting \(\alpha = \delta = 0 \) in Corollary 6, we have
Corollary 7. Let \(f_i \in A \) be starlike functions in \(U \) for all \(i = 1, 2, \ldots, n \). If \(|f_i(z)| \leq M \) (\(M \geq 1, \ z \in U \)) for all \(i = 1, 2, \ldots, n \) then the integral operator defined in (6) is convex in \(U \), where \(|\gamma| = \frac{1}{n(2M + 1)}\), \(\gamma \in \mathbb{C} \).

Letting \(n = 1 \) in Corollary 4, we obtain Theorem 1 from paper [4].

Theorem 4. Let \(f_i(z) \in A \) be in the class \(B(\mu, \alpha) \), \(\mu \geq 0, \ 0 \leq \alpha < 1 \) for all \(i = 1, 2, \ldots, n \). If \(|f_i(z)| \leq M_i \) (\(M_i \geq 1, \ z \in U \)) for all \(i = 1, 2, \ldots, n \), then the integral operator

\[
H_{n,\gamma}(z) = \int_0^z \prod_{i=1}^n \left(t e^{f_i(t)} \right)^{\frac{1}{\gamma}} \, dt
\]

is in \(K(\delta) \), where

\[
\delta = 1 - \frac{1}{|\gamma|} \left[n + (2 - \alpha) \sum_{i=1}^n M_i^{\mu} \right]
\]

and \(\frac{1}{|\gamma|} < \frac{1}{n + (2 - \alpha) \sum_{i=1}^n M_i^{\mu}} \), \(\gamma \in \mathbb{C} \setminus \{0\} \).

Proof. Let \(f_i \in A \) be in the class \(B(\mu, \alpha) \), \(\mu \geq 0, \ 0 \leq \alpha < 1 \). We have from (7) that

\[
H_{n,\gamma}(z) = \int_0^z t^{\frac{n}{\gamma}} e^{\sum_{i=1}^n f_i(t)} \, dt \quad \text{and} \quad H'_{n,\gamma}(z) = z^{\frac{n}{\gamma}} e^{\sum_{i=1}^n f_i(z)}.
\]

Also

\[
H''_{n,\gamma}(z) = \frac{1}{\gamma} \left(\frac{1}{z^n} e^{\sum_{i=1}^n f_i(z)} \right)^{\frac{1}{\gamma} - 1} \cdot z^{n-1} \cdot e^{\sum_{i=1}^n f_i(z)} \left(n + z \sum_{i=1}^n f_i'(z) \right)
\]

Then

\[
\frac{H''_{n,\gamma}(z)}{H'_{n,\gamma}(z)} = \frac{1}{\gamma} \left(\frac{n}{z} + \sum_{i=1}^n f_i'(z) \right)
\]

and, hence

\[
\left| \frac{z H''_{n,\gamma}(z)}{H'_{n,\gamma}(z)} \right| = \frac{1}{|\gamma|} \left| n + z \sum_{i=1}^n f_i'(z) \right| \leq \frac{1}{|\gamma|} \left(\sum_{i=1}^n \left| 1 + z f_i'(z) \right| \right)
\]

\[
\leq \frac{1}{|\gamma|} \sum_{i=1}^n \left[1 + \left| f_i'(z) \left(\frac{z}{f_i(z)} \right) \right| \mu \cdot \left(\frac{f_i(z)}{z} \right)^{\mu} \cdot |z| \right]
\]

(24)
Applying the General Schwarz lemma, we have
$$\left| \frac{f_i(z)}{z} \right| \leq M_i, \text{ for all } i = 1, 2, \ldots, n.$$ Therefore, from (24), we obtain
$$\left| z \frac{H''_{n,\gamma}(z)}{H'_{n,\gamma}(z)} \right| \leq \frac{1}{|\gamma|} \sum_{i=1}^{n} \left[1 + \left| f'_i(z) \left(\frac{z}{f_i(z)} \right)^\mu \cdot M_i^\mu \right| \right], \quad (z \in U). \quad (25)$$

From (4) and (25), we see that
$$\left| z \frac{H''_{n,\gamma}(z)}{H'_{n,\gamma}(z)} \right| \leq \frac{1}{|\gamma|} \left[n + (2 - \alpha) \sum_{i=1}^{n} M_i^\mu \right] = 1 - \delta.$$

For $M_1 = M_2 = \ldots = M_n = M$ we have

Corollary 8. Let $f_i(z) \in A$ be in the class $B(\mu, \alpha), \mu \geq 0, \ 0 \leq \alpha < 1$ for all $i = 1, 2, \ldots, n$. If $|f_i(z)| \leq M$ $(M \geq 1, \ z \in U)$ for all $i = 1, 2, \ldots, n$, then the integral operator
$$H_{n,\gamma}(z) = \int_0^z \prod_{i=1}^{n} \left(te^{K(t)} \right)^{\frac{1}{\gamma}} dt$$
is in $K(\delta)$, where
$$\delta = 1 - \frac{n}{|\gamma|} \left[(2 - \alpha)M^\mu + 1 \right] \quad (26)$$
and
$$\frac{1}{|\gamma|} < \frac{1}{n[(2 - \alpha)M^\mu + 1]^\gamma}, \gamma \in \mathbb{C} \setminus \{0\}.$$

Letting $\mu = 0$ in Corollary 8, we have

Corollary 9. Let $f_i(z) \in A$ be in the class $R(\alpha), \ 0 \leq \alpha < 1$ for all $i = 1, 2, \ldots, n$. Then the integral operator defined in (7) is in $K(\delta)$, where
$$\delta = 1 - \frac{n}{|\gamma|} (3 - \alpha) \quad (27)$$
and
$$\frac{1}{|\gamma|} < \frac{1}{n(3 - \alpha)}, \gamma \in \mathbb{C} \setminus \{0\}.$$

Letting $\mu = 1$ in Corollary 8, we have
Corollary 10. Let \(f_i \in A \) be in the class \(S^*(\alpha) \), \(0 \leq \alpha < 1 \) for all \(i = 1, 2, \ldots, n \). If \(|f_i(z)| \leq M \) (\(M \geq 1, z \in U \)) for all \(i = 1, 2, \ldots, n \), then the integral operator defined in (7) is in \(K(\delta) \), where
\[
\delta = 1 - \frac{n}{\gamma} [1 + (2 - \alpha)M] \quad (28)
\]
and \(\frac{1}{|\gamma|} < \frac{1}{n[1 + (2 - \alpha)M]} \), \(\gamma \in \mathbb{C} \setminus \{0\} \).

Letting \(\alpha = \delta = 0 \) in Corollary 10, we have

Corollary 11. Let \(f_i(z) \in A \) be starlike functions in \(U \) for all \(i = 1, 2, \ldots, n \). If \(|f_i(z)| \leq M \) (\(M \geq 1, z \in U \)) for all \(i = 1, 2, \ldots, n \), then the integral operator defined in (7) is convex in \(U \), where
\[
\frac{1}{|\gamma|} = \frac{1}{n(2M + 1)}, \quad \gamma \in \mathbb{C} \setminus \{0\}.
\]

Letting \(n = 1 \) in Corollary 8, we obtain Theorem 2.

Theorem 5. Let \(f_i(z) \in A \) be in the class \(B(\mu, \alpha) \), \(\mu \geq 0 \), \(0 \leq \alpha < 1 \) for all \(i = 1, 2, \ldots, n \). If \(|f_i(z)| \leq M_i \) (\(M_i \geq 1, z \in U \)) for all \(i = 1, 2, \ldots, n \), then the integral operator
\[
H_n(z) = \int_0^z \prod_{i=1}^n \left(t \gamma f_i(t)\right)^{\gamma_i} \, dt
\]
is in \(K(\delta) \), where
\[
\delta = 1 - \sum_{i=1}^n \frac{|\gamma_i|}{\gamma} [1 + (2 - \alpha)M_i]\mu \quad (29)
\]
and \(\sum_{i=1}^n |\gamma_i| [1 + (2 - \alpha)M_i]\mu < 1 \), \(\gamma_i \in \mathbb{C} \) for all \(i = 1, 2, \ldots, n \).

Proof. Let \(f_i \in A \) be in the class \(B(\mu, \alpha) \), \(\mu \geq 0 \), \(0 \leq \alpha < 1 \). It follows from (8) that
\[
H_n(z) = \int_0^z \sum_{i=1}^n \gamma_i \prod_{i=1}^n \gamma_i f_i(t) \, dt \quad \text{and} \quad H_n'(z) = z \sum_{i=1}^n \gamma_i \prod_{i=1}^n \gamma_i f_i'(z).
\]

Also
\[
H_n''(z) = z^{\sum_{i=1}^n \gamma_i - 1} \prod_{i=1}^n \gamma_i f_i(z) \left[\sum_{i=1}^n \gamma_i + z \sum_{i=1}^n \gamma_i f_i'(z) \right]
\]

Then
\[
\frac{H_n''(z)}{H_n'(z)} = \frac{\sum_{i=1}^n \gamma_i + z \sum_{i=1}^n \gamma_i f_i'(z)}{z}
\]
and, hence

\[
\left| \frac{zH_n''(z)}{H_n'(z)} \right| = \left| \sum_{i=1}^{n} \gamma_i + z \sum_{i=1}^{n} \gamma_i f'_i(z) \right| \leq \sum_{i=1}^{n} |\gamma_i| + |z| \sum_{i=1}^{n} |\gamma_i| \cdot |f'_i(z)| \\
\leq \sum_{i=1}^{n} |\gamma_i| + |z| \sum_{i=1}^{n} |\gamma_i| \cdot f'_i(z) \left(\frac{z}{f_i(z)} \right)^{\mu} \cdot \left(\frac{f_i(z)}{z} \right)^{\mu}
\]

(30)

Applying the General Schwarz lemma, we have

\[
\left| \frac{f_i(z)}{z} \right| \leq M_i, \text{ for all } i = 1, 2, \ldots, n.
\]

Therefore, from (30), we obtain

\[
\left| \frac{zH_n''(z)}{H_n'(z)} \right| \leq \sum_{i=1}^{n} |\gamma_i| + |z| \sum_{i=1}^{n} |\gamma_i| \cdot f'_i(z) \left(\frac{z}{f_i(z)} \right)^{\mu} \cdot M_i^{\mu}, \text{ (z } \in U).
\]

(31)

From (4) and (31), we see that

\[
\left| \frac{zH_n''(z)}{H_n'(z)} \right| \leq \sum_{i=1}^{n} |\gamma_i| \cdot \left[1 + (2 - \alpha)M_i^{\mu} \right] = 1 - \delta.
\]

This completes the proof. \(\square\)

For \(M_1 = M_2 = \ldots = M_n = M\) we have

Corollary 12. Let \(f_i(z) \in A\) be in the class \(B(\mu, \alpha), \mu \geq 0, 0 \leq \alpha < 1\) for all \(i = 1, 2, \ldots, n\). If \(|f_i(z)| \leq M \ (M \geq 1, \ z \in U)\) for all \(i = 1, 2, \ldots, n\), then the integral operator

\[
H_n(z) = \int_0^z \prod_{i=1}^{n} \left(te^{f_i(t)} \right)^{\gamma_i} dt
\]

is in \(K(\delta)\), where

\[
\delta = 1 - \sum_{i=1}^{n} |\gamma_i| \cdot [(2 - \alpha)M^{\mu} + 1]
\]

(32)

and \(\sum_{i=1}^{n} |\gamma_i| < \frac{1}{(2 - \alpha)M^{\mu} + 1}, \gamma_i \in \mathbb{C}\) for all \(i = 1, 2, \ldots n\).

Letting \(\mu = 0\) in Corollary 12, we have

Corollary 13. Let \(f_i(z) \in A\) be in the class \(R(\alpha), 0 \leq \alpha < 1\) for all \(i = 1, 2, \ldots, n\). Then the integral operator defined in (8) is in \(K(\delta)\), where

\[
\delta = 1 - \sum_{i=1}^{n} |\gamma_i| (3 - \alpha)
\]

(33)

42
\[\sum_{i=1}^{n} |\gamma_i| < \frac{1}{3 - \alpha}, \; \gamma_i \in \mathbb{C} \text{ for all } i = 1, 2, ..., n. \]

Letting \(\mu = 1 \) in Corollary 12, we have

Corollary 14. Let \(f_i \in \mathcal{A} \) be in the class \(S^*(\alpha) \), \(0 \leq \alpha < 1 \) for all \(i = 1, 2, ..., n \). If \(|f_i(z)| \leq M \) (\(M \geq 1, \; z \in U \)) for all \(i = 1, 2, ..., n \), then the integral operator defined in (8) is in \(K(\delta) \), where

\[\delta = 1 - \sum_{i=1}^{n} |\gamma_i|[1 + (2 - \alpha)M] \quad (34) \]

and \(\sum_{i=1}^{n} |\gamma_i| < \frac{1}{1 + (2 - \alpha)M}, \; \gamma_i \in \mathbb{C} \text{ for all } i = 1, 2, ..., n. \)

Letting \(\alpha = \delta = 0 \) in Corollary 14, we have

Corollary 15. Let \(f_i \in \mathcal{A} \) be starlike functions in \(U \) for all \(i = 1, 2, ..., n \). If \(|f(z)| \leq M \) (\(M \geq 1, \; z \in U \)) for all \(i = 1, 2, ..., n \) then the integral operator defined in (8) is convex in \(U \), where \(\sum_{i=1}^{n} |\gamma_i| = \frac{1}{2M + 1}, \; \gamma_i \in \mathbb{C} \text{ for all } i = 1, 2, ..., n. \)

Letting \(n = 1 \) in Corollary 12, we obtain Theorem 1.

References

Vasile Marius Macarie
University of Pitești
Department of Mathematics
Argeș, România.
E-mail: macariem@yahoo.com

Daniel Breaz
"1 Decembrie 1918" University of Alba Iulia
Department of Mathematics
Alba Iulia, Str. N. Iorga, 510000, No. 11-13, România.
E-mail: dbreaz@uab.ro