INCLUSION AND NEIGHBORHOOD PROPERTIES OF CERTAIN CLASSES OF MULTIVALENTLY ANALYTIC FUNCTIONS DEFINED BY USING A DIFFERENTIAL OPERATOR

M.K. AOUF AND S. BULUT

ABSTRACT. Making use of a differential operator, we introduce and investigate two classes of multivalently analytic functions of complex order. In this paper, we obtain coefficient estimates and inclusion relationships involving the \((j, \delta)\)-neighborhood of various subclasses of multivalently analytic functions of complex order.

2000 Mathematics Subject Classification: 30C45.

Keywords: Multivalent analytic functions, differential operator, complex order, inclusion properties, neighborhood.

1. Introduction

Let \(T(j, p)\) denote the class of functions of the form:

\[
f(z) = z^p - \sum_{k=j+p}^{\infty} a_k z^k \quad (a_k \geq 0; \ p, j \in N = \{1, 2, \ldots}\),
\]

which are analytic in the open unit disc \(U = \{z : |z| < 1\}\).

A function \(f(z) \in T(j, p)\) is said to be \(p\)-valently starlike of order \(\alpha\) if it satisfies the inequality:

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha \quad (z \in U; \ 0 \leq \alpha < p; p \in N). \tag{1.2}
\]

We denote by \(T^*_j(p, \alpha)\) the class of all \(p\)-valently starlike functions of order \(\alpha\).

Also a function \(f(z) \in T(j, p)\) is said to be \(p\)-valently convex of order \(\alpha\) if it satisfies the inequality:

\[
\text{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \alpha \quad (z \in U; \ 0 \leq \alpha < p; p \in N). \tag{1.3}
\]
We denote by \(C_j(p, \alpha) \) the class of all \(p \)-valently convex functions of order \(\alpha \).

We note that (see for example Duren [10] and Goodman [12])

\[
f(z) \in C_j(p, \alpha) \iff z f'(z) / p \in T_j^*(p, \alpha) \quad (0 \leq \alpha < p; p \in \mathbb{N}).
\]

(1.4)

For each \(f(z) \in T(j, p) \), we have (see [9])

\[
f(q)(z) = \frac{p!}{(p-q)!} z^{p-q} - \sum_{k=j+p}^{\infty} \frac{k!}{(k-q)!} a_k z^{k-q} \quad (q \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}; p > q).
\]

(1.5)

For a function \(f(z) \) in \(T(j, p) \), we define

\[
D_0^q f(z) = f(q)(z),
\]

\[
D_1^p f(q)(z) = f(q)(z) = \frac{z}{(p-q)!} (f(q)(z))' = \frac{z}{(p-q)} f^{(1+q)}(z)
\]

\[
= \frac{p!}{(p-q)!} z^{p-q} - \sum_{k=j+p}^{\infty} \frac{k!}{(k-q)!} \left(\frac{k-q}{p-q} \right) a_k z^{k-q},
\]

(1.6)

\[
D_2^p f(q)(z) = D(D_1^p f(q)(z))
\]

\[
= \frac{p!}{(p-q)!} z^{p-q} - \sum_{k=j+p}^{\infty} \frac{k!}{(k-q)!} \left(\frac{k-q}{p-q} \right)^2 a_k z^{k-q},
\]

(1.7)

and

\[
D_n^p f(q)(z) = D(D_{n-1}^p f(q)(z)) \quad (n \in \mathbb{N})
\]

\[
= \frac{p!}{(p-q)!} z^{p-q} - \sum_{k=j+p}^{\infty} \frac{k!}{(k-q)!} \left(\frac{k-q}{p-q} \right)^n a_k z^{k-q}
\]

(1.8)

The differential operator \(D_n^p f(q)(z) \) was introduced by Aouf [6, 7]. We note that, when \(q = 0 \) and \(p = 1 \), the differential operator \(D_1^q = D^q \) was introduced by Salagean [19]. Also when \(q = 0 \), the operator \(D_n^p \) was introduced by Kamali and Orhan [13], Aouf [5] and Aouf and Mostafa [8].

Now, making use of the differential operator \(D_n^p f(q)(z) \) given by (1.8), we introduce a new subclass \(R_j(p, q, b, \beta) \) of the \(p \)-valently analytic function class \(T(j, p) \) satisfying the following inequality:
\begin{align*}
\left| \frac{1}{b} \left(\frac{z(D_{p}^{n}f(q)(z))'}{D_{p}^{n}f(q)(z)} - (p-q) \right) \right| < \beta \tag{1.9}
\end{align*}

(z \in U; p, j \in N; q, n \in N_{0}; b \in C \setminus \{0\}; 0 < \beta \leq 1; p > q).

Now, following the earlier investigations by Goodman [11], Ruscheweyh [18], and others including Altintas and Owa [1], Altintas et al. ([2] and [3]), Murugusundaramoorthy and Srivastava [14], Raina and Srivastava [17], Aouf [4] and Srivastava and Orhan [20] (see also [15], [16] and [21]), we define the (j, δ)-neighborhood of a function $f(z) \in T(j, p)$ by (see, for example, [3, p. 1668])

\begin{align*}
N_{j, \delta}(f) = \left\{ g : g \in T(j, p), g(z) = z^{p} - \sum_{k=j+p}^{\infty} b_{k}z^{k} \text{ and } \sum_{k=j+p}^{\infty} k |a_{k} - b_{k}| \leq \delta \right\}. \tag{1.10}
\end{align*}

In particular, if $h(z) = z^{p} \ (p \in N)$,

\begin{align*}
N_{j, \delta}(h) = \left\{ g : g \in T(j, p), g(z) = z^{p} - \sum_{k=j+p}^{\infty} b_{k}z^{k} \text{ and } \sum_{k=j+p}^{\infty} k |b_{k}| \leq \delta \right\}. \tag{1.12}
\end{align*}

Also, let $L_{j}(n, p, q, b, \beta)$ denote the subclass of $T(j, p)$ consisting of functions $f(z)$ which satisfy the inequality:

\begin{align*}
\left| \frac{1}{b} \left(\frac{(D_{p}^{n}f(q)(z))'}{(p-q)z^{p-q-1}} - \theta(p, q) \right) \right| < \beta
\end{align*}

(z \in U; p, j \in N; q, n \in N_{0}; b \in C \setminus \{0\}; 0 < \beta \leq 1; p > q), \tag{1.13}

where

\begin{align*}
\theta(p, q) = \frac{p!}{(p-q)!} = \begin{cases}
1 & (q = 0), \\
p(p-1)\ldots(p-q+1) & (q \neq 0).
\end{cases} \tag{1.14}
\end{align*}

Remark 1. Throughout our present paper, we assume that $\theta(p, q)$ is defined by (1.14).
2. Neighborhoods for the Classes \(R_j(n, p, q, b, \beta) \) and \(L_j(n, p, q, b, \beta) \)

In our investigation of the inclusion relations involving \(N_{j, \beta}(h) \), we shall require Lemmas 1 and 2 below.

Lemma 1. Let the function \(f(z) \in T(j, p) \) be defined by (1.1). Then \(f(z) \) is in the class \(R_j(n, p, q, b, \beta) \) if and only if

\[
\sum_{k=j+p}^{\infty} \left(\frac{k-q}{p-q} \right)^n (k + \beta |b| - p) \theta(k, q) a_k \leq \beta |b| \theta(p, q). \tag{2.1}
\]

Proof. Let a function \(f(z) \) of the form (1.1) belong to the class \(R_j(n, p, q, b, \beta) \). Then, in view of (1.8) and (1.9), we obtain the following inequality:

\[
\text{Re} \left\{ \frac{z(D^n_p f^{(q)}(z))'}{D^n_p f^{(q)}(z)} - (p-q) \right\} > -\beta |b| \quad (z \in U), \tag{2.2}
\]

or, equivalently,

\[
\text{Re} \left\{ \frac{- \sum_{k=j+p}^{\infty} \left(\frac{k-q}{p-q} \right)^n (k - p) \theta(k, q) a_k z^{k-p}}{\theta(p, q) - \sum_{k=j+p}^{\infty} \left(\frac{k-q}{p-q} \right)^n \theta(k, q) a_k z^{k-p}} \right\} > -\beta |b| \quad (z \in U). \tag{2.3}
\]

Setting \(z = r \) (0 \(r < 1 \)) in (2.3), we observe that the expression in the denominator of the left-hand side of (2.3) is positive for \(r = 0 \) and also for all \(r \) (0 \(r < 1 \)). Thus, by letting \(r \to 1^- \) through real values, (2.3) leads us to the desired assertion (2.1) of Lemma 1.

Conversely, by applying the hypothesis (2.1) and letting \(|z| = 1 \), we find from (1.9) that

\[
\left| \frac{z(D^n_p f^{(q)}(z))'}{D^n_p f^{(q)}(z)} - (p-q) \right| = \frac{\sum_{k=j+p}^{\infty} \left(\frac{k-q}{p-q} \right)^n (k - p) \theta(k, q) a_k z^{k-p}}{\theta(p, q) - \sum_{k=j+p}^{\infty} \left(\frac{k-q}{p-q} \right)^n \theta(k, q) a_k z^{k-p}} \leq \frac{\beta |b| \left\{ \theta(p, q) - \sum_{k=j+p}^{\infty} \left(\frac{k-q}{p-q} \right)^n \theta(k, q) a_k \right\}}{\theta(p, q) - \sum_{k=j+p}^{\infty} \left(\frac{k-q}{p-q} \right)^n \theta(k, q) a_k} = \beta |b|.
\]

Hence, by the maximum modulus theorem, we have \(f(z) \in R_j(n, p, q, b, \beta) \), which evidently completes the proof of Lemma 1.
Similarly, we can prove the following lemma.

Lemma 2. Let the function \(f(z) \in T(j,p) \) be defined by \((1.1) \). Then \(f(z) \in L_j(n,p,q,b,\beta) \) if and only if

\[
\sum_{k=j+p}^{\infty} \left(\frac{k-q}{p-q} \right)^{n+1} \theta(k,q)a_k \leq \beta |b|.
\] (2.4)

Our first inclusion relation involving \(N_{j,\delta}(h) \) is given in the following theorem.

Theorem 3. Let

\[
\delta = \frac{(j+p)\beta |b| \theta(p,q)}{(j+\beta |b|) \theta(j+p,q)} \quad (p > |b|),
\] (2.5)

then

\[R_j(n,p,q,b,\beta) \subset N_{j,\delta}(h). \] (2.6)

Proof. Let \(f(z) \in R_j(n,p,q,b,\beta) \). Then, in view of the assertion (2.1) of Lemma 1, we have

\[
\left(\frac{j+p-q}{p-q} \right)^n (j+\beta |b|) \theta(j+p,q) \sum_{k=j+p}^{\infty} a_k
\]
\[
\leq \sum_{k=j+p}^{\infty} \left(\frac{k-q}{p-q} \right)^n (k+\beta |b|-p) \theta(k,q) a_k \leq \beta |b| \theta(p,q),
\] (2.7)

which readily yields

\[
\sum_{k=j+p}^{\infty} a_k \leq \frac{\beta |b| \theta(p,q)}{(j+\beta |b|) \theta(j+p,q)}.
\] (2.8)

Making use of (2.1) again, in conjunction with (2.8), we get

\[
\left(\frac{j+p-q}{p-q} \right)^n \theta(j+p,q) \sum_{k=j+p}^{\infty} k a_k
\]
\[
\leq \beta |b| \theta(p,q) + (p-\beta |b|) \left(\frac{j+p-q}{p-q} \right)^n \theta(j+p,q) \sum_{k=j+p}^{\infty} a_k
\]
\[
\leq \beta |b| \theta(p,q) + \frac{\beta |b| \theta(p,q) \theta(p,q)}{(j+\beta |b|)} = \frac{(j+p)\beta |b| \theta(p,q)}{(j+\beta |b|)}.
\]
Hence
\[\sum_{k=j+p}^{\infty} ka_k \leq \frac{(j + p) \beta |b| \theta(p, q)}{(j + p - q \frac{p - q}{p - q})} = \delta \quad (p > |b|) \quad (2.9) \]
which, by means of the definition (1.12), establishes the inclusion relation (2.6) asserted by Theorem 3.

In a similar manner, by applying the assertion (2.4) of Lemma 2 instead of the assertion (2.1) of Lemma 1 to functions in the class \(L_j(n, p, q, b, \beta) \), we can prove the following inclusion relationship.

Theorem 4. If
\[\delta = \frac{(j + p) \beta |b|}{\left(\frac{j + p - q}{p - q} \right)^{n+1} \theta(j + p, q)} , \quad (2.10) \]
then
\[L_j(n, p, q, b, \beta) \subset N_{j, \delta}(h). \quad (2.11) \]

3. Neighborhoods for the classes \(R_j^{(\alpha)}(n, p, q, b, \beta) \) and \(L_j^{(\alpha)}(n, p, q, b, \beta) \)

In this section, we determine the neighborhood for each of the classes \(R_j^{(\alpha)}(n, p, q, b, \beta) \) and \(L_j^{(\alpha)}(n, p, q, b, \beta) \), which we define as follows.

A function \(f(z) \in T(j, p) \) is said to be in the class \(R_j^{(\alpha)}(n, p, q, b, \beta) \) if there exists a function \(g(z) \in R_j(n, p, q, b, \beta) \) such that
\[\left| \frac{f(z)}{g(z)} - 1 \right| < p - \alpha \quad (z \in U; \ 0 \leq \alpha < p). \quad (3.1) \]

Analogously, a function \(f(z) \in T(j, p) \) is said to be in the class \(L_j^{(\alpha)}(n, p, q, b, \beta) \) if there exists a function \(g(z) \in L_j(n, p, q, b, \beta) \) such that the inequality (3.1) holds true.

Theorem 5. If \(g(z) \in R_j(n, p, q, b, \beta) \) and
\[\alpha = p - \frac{\delta \left(\frac{j + p - q}{p - q} \right)^n (j + \beta |b|) \theta(j + p, q)}{(j + p) \left(\frac{j + p - q}{p - q} \right)^n (j + \beta |b|) \theta(j + p, q) - \beta |b| \theta(p, q)} , \quad (3.2) \]

40
then
\[N_{j,\delta}(g) \subset R_j^{(\alpha)}(n, p, q, b, \beta), \quad (3.3) \]

where
\[\delta \leq p(j + p) \left\{ 1 - \beta |b| \theta(p, q) \left[\left(\frac{j + p - q}{p - q} \right)^n (j + \beta |b|)\theta(j + p, q) \right]^{-1} \right\}. \quad (3.4) \]

Proof. Suppose that \(f(z) \in N_{j,\delta}(g) \). We find from (1.10) that
\[\sum_{k=j+p}^{\infty} k |a_k - b_k| \leq \delta, \quad (3.5) \]
which readily implies that
\[\sum_{k=j+p}^{\infty} |a_k - b_k| \leq \frac{\delta}{j + p} \quad (p, j \in \mathbb{N}). \quad (3.6) \]

Next, since \(g(z) \in R_j(n, p, q, b, \beta) \), we have [cf. equation (2.8)]
\[\sum_{k=j+p}^{\infty} b_k \leq \frac{\beta |b| \theta(p, q)}{(j + p - q) (j + \beta |b|)\theta(j + p, q)}, \quad (3.7) \]
so that
\[\frac{|f(z) - g(z)|}{g(z)} \leq \frac{\sum_{k=j+p}^{\infty} |a_k - b_k|}{1 - \sum_{k=j+p}^{\infty} b_k} \]
\[\leq \frac{\delta}{j + p} \cdot \left\{ \left(\frac{j + p - q}{p - q} \right)^n (j + \beta |b|)\theta(j + p, q) - \beta |b| \theta(p, q) \right\} = p - \alpha, \quad (3.8) \]
provided that \(\alpha \) is given by (3.2). Thus, by the above definition, \(f(z) \in R_j^{(\alpha)}(n, p, q, b, \beta) \) for \(\alpha \) given by (3.2). This evidently proves Theorem 5.

The proof of Theorem 6 below is similar to that of Theorem 5.
Theorem 6. If \(g(z) \in L_j(n, p, q, b, \beta) \) and

\[
\alpha = p - \frac{\delta \left(\frac{j + p - q}{p - q} \right)^{n+1} \theta(j + p, q)}{(j + p) \left\{ \left(\frac{j + p - q}{p - q} \right)^{n+1} \theta(j + p, q) - \beta |b| \right\}},
\]

then

\[
N_{j, \delta}(g) \subset L_j^{(\alpha)}(n, p, q, b, \beta),
\]

where

\[
\delta \leq p(j + p) \left\{ 1 - \beta |b| \left[\left(\frac{j + p - q}{p - q} \right)^{n+1} \theta(j + p, q) \right]^{-1} \right\}.
\]

Acknowledgements. The second author was supported by the Kocaeli University under Grant KOU-BAP-HD 2011/22.

References

M. K. Aouf
Department of Mathematics, Faculty of Science,
Mansoura University,
Mansoura 35516, Egypt
email: mkaouf127@yahoo.com

S. Bulut
Kocaeli University,
Civil Aviation College,
Arslanbey Campus,
41285 Izmit-Kocaeli, Turkey
email: serap.bulut@kocaeli.edu.tr