ON \((\in, \in \lor Q_k)\)-FUZZY KU-IDEALS OF KU-ALGEBRAS

M. GULISTAN, M. SHAHZAD, N. YAQOOB

Abstract. We define \((\in, \in \lor q_k)\)-fuzzy KU-ideals of KU-algebras and then some related results have been provided.

2000 Mathematics Subject Classification: 03G25.

Keywords: KU-algebras, KU-ideals, \((\in, \in \lor q_k)\)-fuzzy KU-ideals.

1. Introduction

Fuzzy set theory was first introduced by Zadeh [9] in 1965. The concept of KU-algebras was given by Prabpayak and Leerawat [6, 7] in 2009. The study of fuzzy KU-algebras was first initiated by Mostafa et al. [4]. They also studied KU-algebras in terms of interval-valued fuzzy sets in [5]. Akram et al. [2] introduced the concept of interval valued \((\tilde{\theta}, \tilde{\delta})\)-fuzzy KU-ideals of KU-algebras and Yaqoob et al. [8] introduced the concept of cubic KU-ideals of KU-algebras.

In this article, we study the concept of \((\in, \in \lor q_k)\)-fuzzy KU-subalgebra and \((\in, \in \lor q_k)\)-fuzzy KU-ideal of KU-algebras.

2. Review of literature

Now we recall some known concepts related to KU-algebra from the literature which will be helpful in further study of this article.

Definition 1. [6] By a KU-algebra we mean an algebra with a binary operation ”∗”, satisfying the following conditions:

\[(i) : (l \ast m) \ast [(m \ast n) \ast (l \ast n)] = 0,\]
\[(ii) : l \ast 0 = 0, \forall l \in X,\]
\[(iii) : 0 \ast l = l, \forall l \in X,\]
\[(iv) : l \ast m = 0 = m \ast l \text{ implies } l = m, \forall l, m, n \in X.\]

We call it an algebra \((X, \ast, 0)\) of type \((2, 0)\). In further study of this article we denote a KU-algebra by \(X\). We define ”\(\leq\)” in \(X\) as if \(l \leq m\) if and only if \(m \ast l = 0\).
Definition 2. [7] A subset S of KU-algebra X is called KU-subalgebra of X if $l \ast m \in S$, whenever $l, m \in S$.

Definition 3. [7] A non-empty subset A of a KU-algebra X is called a KU-ideal of X if it satisfies the following conditions:

1. $0 \in A$,
2. $l \ast (m \ast n) \in A$, $m \in A$ implies $l \ast n \in A$, for all $l, m, n \in X$.

Definition 4. Fuzzy point in a KU-algebra X is defined as

$$\psi(z) = \begin{cases} t & \text{if } z = x \\ 0 & \text{otherwise} \end{cases}$$

is said to be a fuzzy point with support x and value t and is denoted by x_t. The notation $x_t \alpha \psi$ means that $\psi(x) \geq t$ and $x_t q_k \psi$ means that $\psi(x) + t > 1$ and $x_t q_k \psi \Rightarrow \psi(x) + t + k > 1$, while the notation $x_t \alpha \psi \Rightarrow x_t q_k \psi$ does not hold.

3. $(\in, \in \lor q_k)$-fuzzy KU-ideals in KU-algebras

In this section we study the properties of $(\in, \in \lor q_k)$-fuzzy KU-ideals.

Definition 5. A fuzzy subset $\psi : X \to [0, 1]$ is said to be $(\in, \in \lor q_k)$-fuzzy KU-subalgebra of X if it satisfies the following conditions:

(i) $[x, t] \in \psi \Rightarrow [0, t] \in \lor q_k \psi$,

(ii) $[x \ast (y \ast z), t_1] \in \psi, [y, t_2] \in \psi \Rightarrow [x, t_1 \land t_2] \in \lor q_k \psi$.

Example 1. Let us consider the KU-algebra $(X, \ast, 0)$ in which \ast is defined as follows:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>l</th>
<th>m</th>
<th>n</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>l</td>
<td>m</td>
<td>n</td>
<td>p</td>
</tr>
<tr>
<td>l</td>
<td>0</td>
<td>0</td>
<td>m</td>
<td>n</td>
<td>p</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>l</td>
<td>0</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>m</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>p</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Let us define $\psi(0) = 0.9$, $\psi(l) = 0.8$, $\psi(m) = 0.7$, $\psi(n) = 0.6$, $\psi(p) = 0.5$. Let $t = 0.49$ and $k = 0.48$ then by routine calculation it is clear that ψ is an $(\in, \in \lor q_{0.48})$-fuzzy KU-subalgebra of X.

Definition 6. A fuzzy subset $\psi : X \to [0, 1]$ is said to be an $(\in, \in \lor q_k)$-fuzzy KU-ideal of X if it satisfies the following conditions:

(i) $[x, t] \in \psi \Rightarrow [0, t] \in \lor q_k \psi$,

(ii) $[x \ast (y \ast z), t_1] \in \psi, [y, t_2] \in \psi \Rightarrow [x, t_1 \land t_2] \in \lor q_k \psi$.

76
Theorem 1. A fuzzy subset \(\psi \) of \(X \) is said to be an \((\varepsilon, \in \vee q_k)\)-fuzzy KU-ideal of \(X \) if and only if it satisfies:

(i) \(\psi(0) \geq \min \{ \psi(x), \frac{1-k}{2} \} \),

(ii) \(\psi(x \ast z) \geq \min \{ \psi(x \ast (y \ast z)), \psi(y), \frac{1-k}{2} \} \) \(\forall x, y, z \in X \).

Proof. Let \(\psi \) of \(X \) is an \((\varepsilon, \in \vee q_k)\)-fuzzy KU-ideal of \(X \). Let there exist some \(x, y, z \) in \(X \) such that

(i) \(\psi(0) < \min \{ \psi(x), \frac{1-k}{2} \} \),

(ii) \(\psi(x \ast z) < \min \{ \psi(x \ast (y \ast z)), \psi(y), \frac{1-k}{2} \} \).

Now consider (i) and if \(\psi(x) < \frac{1-k}{2} \Rightarrow \psi(0) < \psi(x) \) and \(\psi(0) < t \leq \psi(x) \) for some \(t \in (0, 1) \) \(\Rightarrow [x, t] \in \psi \) but \([0, t] \notin \psi \). Moreover \(\psi(0) + t < 2t < 1 - k \) which implies that \([0, t] \notin q_k \psi \). Hence \([0, t] \notin \vee q_k \psi \), which contradicts the given hypothesis. Now if \(\psi(x) \geq \frac{1-k}{2} \) then it will imply that \([x, \frac{1-k}{2}] \notin \psi \) and \(\psi(0) < \frac{1-k}{2} \Rightarrow [0, \frac{1-k}{2}] \notin \psi \). Moreover if \(\psi(0) + \frac{1-k}{2} < 1 - k \) \(\Rightarrow [0, \frac{1-k}{2}] \notin q_k \psi \) and consequently \([0, \frac{1-k}{2}] \notin q_k \psi \), which contradicts the given hypothesis and thus \(\psi(0) \geq \min \{ \psi(x), \frac{1-k}{2} \} \). Now consider (ii) and if

\[
\min \{ \psi(x \ast (y \ast z)), \psi(y) \} < \frac{1-k}{2} \Rightarrow \psi(x \ast z) < \min \{ \psi(x \ast (y \ast z)), \psi(y) \}
\]

and for some \(t \in (0, 1) \) we have

\[
\psi(x \ast z) < t \leq \min \{ \psi(x \ast (y \ast z)), \psi(y) \}.
\]

Which implies that \([x \ast (y \ast z), t] \in \psi \) and \([y, t] \in \psi \) but \([x \ast z, t] \notin \psi \). And if \(\psi(x \ast z) + t < 2t < 1 - k \) and thus \([x \ast z, t] \notin q_k \psi \). Consequently \([x \ast z, t] \notin \vee q_k \psi \) which is contradiction and if \(\min \{ \psi(x \ast (y \ast z)), \psi(y) \} \geq \frac{1-k}{2} \) we get again \([x \ast z, t] \in \vee q_k \psi \), which again contradicts the given hypothesis and thus

\[
\psi(x \ast z) \geq \min \{ \psi(x \ast (y \ast z)), \psi(y), \frac{1-k}{2} \}.
\]

Conversely assume that (i) and (ii) are valid and we have to prove that \(\psi \) of \(X \) is \((\varepsilon, \in \vee q_k)\)-fuzzy KU-ideal of \(X \). For this let \([x, t] \in \psi \) for \(x \in X \) and \(t \in [0, 1] \). Which implies that \(\psi(x) \geq t \). But \(\psi(0) \geq \min \{ \psi(x), \frac{1-k}{2} \} \geq \min \{ t, \frac{1-k}{2} \} \). Now if \(t > \frac{1-k}{2} \) then \(\psi(0) \geq \frac{1-k}{2} \Rightarrow \psi(0) = t > 1 - k \nrightarrow [0, t] \notin q_k \psi \) and if \(t > \frac{1-k}{2} \) then it is obvious that \([0, t] \notin q_k \psi \), thus \([0, t] \notin \vee q_k \psi \). Hence \([x, t] \in \psi \Rightarrow [0, t] \in q_k \psi \). Similarly we can show that

\[
[x \ast (y \ast z), t_1] \in \psi \Rightarrow [x, t_2] \in \psi \Rightarrow [x \ast z, t_1 \wedge t_2] \in q_k \psi.
\]

This completes the proof.
Corollary 2. A fuzzy subset ψ of X is said to be an $(\in, \in \circ \text{q}_k)$-fuzzy KU-subalgebra of X if and only if it satisfies:

(i) $\psi(0) \geq \min \left\{ \psi(x), \frac{1-k}{2} \right\}$,

(ii) $\psi(x) \geq \min \left\{ \psi(x \ast y), \psi(y), \frac{1-k}{2} \right\}$ for all $x, y \in X$.

Proof. By putting $z = 0$ in the proof of the above theorem we can easily prove it.

Next we characterize $(\in, \in \circ \text{q}_k)$-fuzzy KU-ideal of X in terms of level sets.

Theorem 3. A fuzzy subset ψ of X is said to be $(\in, \in \circ \text{q}_k)$-fuzzy KU-ideal of X if and only if the following set $U[\psi, t] = \{ x \in X | \psi(x) \geq t \}$ is a KU-ideal of X where $t \in (0, \frac{1-k}{2}]$.

Proof. Assume that ψ of X is an $(\in, \in \circ \text{q}_k)$-fuzzy KU-ideal of X and let $x \in U[\psi, t]$ which implies by definition that $\psi(x) \geq t$ for some $t \in (0, \frac{1-k}{2}]$. But $\psi(0) \geq \min \left\{ \psi(x), \frac{1-k}{2} \right\} \geq \min \left\{ t, \frac{1-k}{2} \right\} = t$, which implies that $0 \in U[\psi, t]$. Now again let $(x \ast (y \ast z)) \in U[\psi, t]$ and $y \in U[\psi, t]$ then by definition we get $\psi(x \ast (y \ast z)) \geq t$ and $\psi(y) \geq t$ but

$$\psi(x \ast z) \geq \min \left\{ \psi(x \ast (y \ast z)), \psi(y), \frac{1-k}{2} \right\} \geq \min \left\{ t, t, \frac{1-k}{2} \right\} = t,$$

which implies that $x \ast z \in U[\psi, t]$. Hence $U[\psi, t]$ is a KU-ideal of X where $t \in (0, \frac{1-k}{2}]$.

Conversely let $U[\psi, t]$ is a KU-ideal of X where $t \in (0, \frac{1-k}{2}]$ and we show that ψ of X is an $(\in, \in \circ \text{q}_k)$-fuzzy KU-ideal of X. For this let there exist some $t \in (0, \frac{1-k}{2}]$ such that $\psi(0) < t \leq \min \left\{ \psi(x), \frac{1-k}{2} \right\}$ which implies that $x \in U[\psi, t]$ but $0 \not\in U[\psi, t]$ which is contradiction and hence $\psi(0) \geq \min \left\{ \psi(x), \frac{1-k}{2} \right\}$. Similarly we can prove that $\psi(x \ast z) \geq \min \left\{ \psi(x \ast (y \ast z)), \psi(y), \frac{1-k}{2} \right\}$. This completes the proof.

Example 2. Let us consider the KU-algebra $(X, \ast, 0)$ in which \ast is defined as follows

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>l</th>
<th>m</th>
<th>n</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>l</td>
<td>m</td>
<td>n</td>
<td>p</td>
<td>q</td>
</tr>
<tr>
<td>l</td>
<td>0</td>
<td>0</td>
<td>m</td>
<td>m</td>
<td>p</td>
<td>q</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>l</td>
<td>p</td>
<td>q</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>l</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>q</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a fuzzy subset ψ of X as $\psi(0) = 0.9, \psi(l) = 0.8, \psi(m) = 0.75, \psi(n) = 0.7, \psi(p) = 0.65, \psi(q) = 0.3$. Then

$$U[\psi, t] = \begin{cases} X & \text{if } t \in (0, 0.3] \text{ for } k = 0.4 \\ \{0, l, m, n, p\} & \text{if } t \in (0.3, 0.4] \text{ for } k = 0.2 \end{cases}$$
As X and $\{0, l, m, n, p\}$ are KU-ideals of X, so by Theorem 3, ψ of X is $\langle \in, \in \vee q_k \rangle$-fuzzy KU-ideal of X.

Corollary 4. A fuzzy subset ψ of X is said to be $\langle \in, \in \vee q_k \rangle$-fuzzy KU-subalgebra of X if and only if $U[\psi, t] = \{x \in X \mid \psi(x) \geq t\}$ is a KU-subalgebra of X where $t \in (0, \frac{1-k^2}{2})$.

Proof. By putting $z = 0$ in the proof of the above theorem we can easily prove it.

Theorem 5. Every $\langle \in, \in \rangle$-fuzzy KU-subalgebra (resp., KU-ideal) implies $\langle \in, \in \vee q_k \rangle$-fuzzy KU-subalgebra (resp., KU-ideal) of X.

Proof. The proof is straightforward.

Definition 7. A fuzzy subset $\psi : X \to [0, 1]$ is said to be $\langle \in, q_k \rangle$-fuzzy KU-algebra of X if it satisfy the following conditions:

(i) $[x, t] \in \psi \Rightarrow [0, t] \in q_k \psi$,

(ii) $[x \ast y, t_1] \in \psi, [y, t_2] \in \psi \Rightarrow [x, t_1 \wedge t_2] \in q_k \psi$.

Definition 8. A fuzzy subset $\psi : X \to [0, 1]$ is said to be $\langle \in, q_k \rangle$-fuzzy KU-ideal of X if it satisfy the following conditions:

(i) $[x, t] \in \psi \Rightarrow [0, t] \in q_k \psi$,

(ii) $[x \ast (y \ast z), t_1] \in \psi, [y, t_2] \in \psi \Rightarrow [x \ast z, t_1 \wedge t_2] \in q_k \psi$.

Theorem 6. Every $\langle \in, q_k \rangle$-fuzzy KU-subalgebra (resp., KU-ideal) implies $\langle \in, \in \vee q_k \rangle$-fuzzy KU-subalgebra (resp., KU-ideal) of X.

Proof. The proof is straightforward.

Example 3. Let us consider the KU-algebra $(X, \ast, 0)$ in which \ast is defined as follows

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>l</th>
<th>m</th>
<th>n</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>l</td>
<td>m</td>
<td>n</td>
<td>p</td>
</tr>
<tr>
<td>l</td>
<td>0</td>
<td>0</td>
<td>m</td>
<td>n</td>
<td>p</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>l</td>
<td>0</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>m</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>p</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a fuzzy subset ψ as

$$
\psi(x) = \begin{cases}
0.65 & \text{if } x = 0 \\
0.74 & \text{if } x = l \\
0.55 & \text{if } x \in \{m, n\} \\
0.35 & \text{if } x = p
\end{cases}
$$

then ψ is an $\langle \in, \in \vee q_k \rangle$-fuzzy KU-ideal of X for $k = 0.2$ but ψ is not an $\langle \in, q_k \rangle$-fuzzy KU-ideal of X because $l_{0.7} \in \psi$ but $0_{0.7} \notin \psi$. 79
Theorem 7. Let \(\emptyset \neq A \subset X \), the characteristic function \(\psi_A \) of \(A \) is an \((\epsilon, \epsilon \cap q_k)\)-fuzzy KU-subalgebra (resp., KU-ideal) of \(X \) if and only if \(A \) is a KU-subalgebra (resp., KU-ideal) of \(X \).

Proof. Let \(A \) be a KU-ideal of \(X \), then it is obviously an \((\epsilon, \epsilon)\)-fuzzy KU-ideal of \(X \) which then implies that \(A \) is an \((\epsilon, \epsilon \cap q_k)\)-fuzzy KU-ideal of \(X \).

Conversely assume that \(A \) is an \((\epsilon, \epsilon \cap q_k)\)-fuzzy KU-ideal of \(X \) and we show that \(A \) is a KU-ideal of \(X \). For this let \(x \ast (y \ast z) \in A \), \(y \in A \) then by definition \(\psi_A(x \ast (y \ast z)) = 1 \) and \(\psi_A(y) = 1 \Rightarrow [(x \ast (y \ast z)), 1] \in \psi_A \) and \([y, 1] \in \psi_A \). But by hypothesis

\[
\psi_A(x \ast z) \geq \min \left\{ \psi_A(x \ast (y \ast z)), \psi_A(y), \frac{1-k}{2} \right\} = \min \left\{ 1, 1, \frac{1-k}{2} \right\} = \frac{1-k}{2}
\]

and as \(k \in [0, 1) \) so \(\frac{1-k}{2} \neq 0 \) and hence \(\psi_A(x \ast z) \geq 1 \Rightarrow x \ast z \in A \). Moreover in the same way \(\psi_A(0) \geq \min \{ \psi_A(x), \frac{1-k}{2} \} = 1 \Rightarrow 0 \in A \). Hence \(A \) is a KU-ideal of \(X \).

The other case can be seen in a similar way.

Theorem 8. If \(\{ \psi_i : i \in \Lambda \} \) be a family of \((\epsilon, \epsilon \cap q_k)\)-fuzzy KU-subalgebra (resp., KU-ideal) of \(X \) then so is their intersection \(\psi = \bigcap_{i \in \Lambda} \psi_i \).

Proof. Let \(\{ \psi_i : i \in \Lambda \} \) be a family of \((\epsilon, \epsilon \cap q_k)\)-fuzzy KU-ideal of \(X \) and we have to show that \(\psi = \bigcap_{i \in \Lambda} \psi_i \) is an \((\epsilon, \epsilon \cap q_k)\)-fuzzy KU-ideal of \(X \). For this let \([x, t] \in \psi \) and we have to show that \([0, t] \in \bigcup_{i \in \Lambda} q_k \psi_i \). Assume that \([0, t] \in \bigcup_{i \in \Lambda} q_k \psi_i \Rightarrow \psi(0) < t \) and \(\psi(0) + t < 1 - k \). Which implies that \(\psi(0) < \frac{1-k}{2} \).

Now let

\[
\Delta_1 = \{ i \in \Lambda \mid [0, t] \in q_k \psi_i \}
\]

and

\[
\Delta_2 = \{ i \in \Lambda \mid [0, t] \in q_k \psi_i \} \cap \{ i \in \Lambda \mid [0, t] \in \psi_i \}
\]

then we have \(\Lambda = \Delta_1 \cup \Delta_2 \) and \(\Delta_1 \cap \Delta_2 = \emptyset \). Let us suppose that if \(\Delta_2 = \emptyset \), then

\[
[0, t] \in \bigvee_{i \in \Lambda} \psi_i \Rightarrow \psi_i(0) \geq t, \forall i \in \Lambda \Rightarrow \psi(0) = \bigcap_{i \in \Lambda} \psi_i(0) \geq t,
\]

which contradicts the assumption and so \(\Delta_2 \neq \emptyset \). Thus for each \(i \in \Delta_2 \) we have \([0, t] + t \geq 1 - k \) and \([0, t] < t \), it implies that \(t > \frac{1-k}{2} \). Now since \([x, t] \in \psi \Rightarrow \psi(x) \geq t \) and we can write it as \(\psi(x) \geq t > \frac{1-k}{2} \) for all \(i \in \Lambda \). Next assume that \(\psi_i(0) < \frac{1-k}{2} \) for all \(i \in \Lambda \) and hence \(\psi(0) \geq \frac{1-k}{2} \Rightarrow [0, t] \in q_k \psi \). Similarly we can show that if \([x \ast (y \ast z), t_1] \in \psi \), \([y, t_2] \in \psi \), then it implies that \([x \ast z, t_1 \wedge t_2] \in q_k \psi \). Which shows that \(\psi = \bigcap_{i \in \Lambda} \psi_i \) is \((\epsilon, \epsilon \cup q_k)\)-fuzzy KU-ideal of \(X \). The other case can be seen in a similar way.
For any fuzzy subset \(\psi \) in \(X \) and \(t \in (0, 1] \), we denote \(\psi_t = \{ x \in X \mid [x, t]q_k \psi \} \) and \([\psi]_t = \{ x \in X \mid [x, t] \in Vq_k \psi \} \) then it is clear that \([\psi]_t = U [x, t] \cup \psi_t \).

Theorem 9. Let \(\psi : X \to [0, 1] \) be a fuzzy subset of \(X \) then \(\psi \) is an \((\in, \in \lor q)\)-fuzzy KU-subalgebra (resp., KU-ideal) of \(X \) if and only if \([\psi]_t \) is a KU-subalgebra (resp., KU-ideal) of \(X \) for all \(t \in (0, 1] \).

Proof. Let us assume that \(\psi \) is an \((\in, \in \lor q)\)-fuzzy KU-ideal of \(X \) and we aim to prove that \([\psi]_t \) is a KU-ideal of \(X \) for all \(t \in (0, 1] \). For this let \(x \in [\psi]_t = U [x, t] \cup \psi_t \), which then implies that \([x, t] \in Vq_k \psi \Rightarrow \psi (x) \geq t \) or \(\psi (x) + t > 1 - k \). As \(\psi (0) \geq \min \{ \psi (x), \frac{1-k}{2} \} \), so we have the following cases.

(i) If \(\psi (x) \geq t \) and \(t > \frac{1-k}{2} \) then \(\psi (0) \geq \frac{1-k}{2} \Rightarrow \psi (0) + t > \frac{1-k}{2} + \frac{1-k}{2} = 1 - k \),
which implies that \([0, t]q_k \psi \) and if \(t \leq \frac{1-k}{2} \) then \(\psi (0) \geq t \Rightarrow [0, t] \in \psi \). Hence
\([0, t] \in Vq_k \psi \).

(ii) If \(\psi (x) + t > 1 - k \) and \(t > \frac{1-k}{2} \) then \(\psi (0) \geq (1-k-t) \wedge \frac{1-k}{2} \Rightarrow \psi (0) \geq 1 - k - t \),
which implies that \([0, t]q_k \psi \) and if \(t \leq \frac{1-k}{2} \) then \(\psi (0) \geq (1-k-t) \wedge \frac{1-k}{2} = \frac{1-k}{2} \Rightarrow t \Rightarrow [0, t] \in \psi \). Hence \([0, t] \in Vq_k \psi \). Thus form both cases we get \(0 \in [\psi]_t \).

Again let \((x \ast (y \ast z)) \in [\psi]_t \) and \(y \in [\psi]_t \Rightarrow [x \ast (y \ast z), t] \in Vq_k \psi \) and \([y, t] \in Vq_k \psi \Rightarrow [x \ast (y \ast z), t] \in \psi \) or \([x \ast (y \ast z), t]q_k \psi \) and \([y, t] \in \psi \) or \([y, t]q_k \psi \Rightarrow \psi (x \ast (y \ast z)) \geq t \) or \(\psi (x \ast (y \ast z)) + t + k > 1 \) and \(\psi (y) \geq t \) or \(\psi (y) + t + k > 1 \). So we discuss the following cases.

(i) If \(\psi (x \ast (y \ast z)) \geq t \) and \(\psi (y) \geq t \). So \(\psi (x \ast z) \geq \min \{ t, t, \frac{1-k}{2} \} \) and if \(t > \frac{1-k}{2} \Rightarrow \psi (x) \geq \frac{1-k}{2} \) and hence \(\psi (x \ast z) + t > 1 - k \Rightarrow [x \ast z, t]q_k \psi \) and if \(t \leq \frac{1-k}{2} \) then \(\psi (x \ast z) \geq t \Rightarrow [x \ast z, t] \in \psi \). Hence \([x \ast z, t] \in Vq_k \psi \).

Similarly from all other cases we get \([x \ast z, t] \in Vq_k \psi \). Which shows that \([\psi]_t \) is a KU-ideal of \(X \) for all \(t \in (0, 1] \).

Conversely assume that \([\psi]_t \) is a KU-ideal of \(X \) for all \(t \in (0, 1] \) and we have to show that \(\psi \) is an \((\in, \in \lor q)\)-fuzzy KU-ideal of \(X \). Suppose there exist some \(t \in (0, 1] \) such that
\[\psi (0) < t \leq \min \left\{ \psi (x), \frac{1-k}{2} \right\}, \psi (x \ast z) < t \]
\[\leq \min \left\{ \psi (x \ast (y \ast z)), \psi (y), \frac{1-k}{2} \right\} \Rightarrow x \in U [\psi, t] \subseteq [\psi]_t \Rightarrow 0 \in [\psi]_t \]
by hypothesis. Which then implies that \(\psi (0) \geq t \) or \(\psi (0) + t + k > 1 \), this is a contradiction. Similarly
\[\psi (x \ast z) < t \leq \min \left\{ \psi (x \ast (y \ast z)), \psi (y), \frac{1-k}{2} \right\} \]
leads to a contradiction. Thus $\forall x, y, z \in X$ we have

$$\psi(0) \geq \min \left\{ \psi(x), \frac{1-k}{2} \right\} \text{ and } \psi(x \ast z) \geq \min \left\{ \psi(x \ast y) \ast z, \psi(y), \frac{1-k}{2} \right\},$$

which shows that ψ is an $(\in, \in \lor \lambda)$-fuzzy KU-ideal of X. The other case can be seen in a similar way.

Theorem 10. Let there is an $(\in, \in \lor \lambda)$-fuzzy KU-subalgebra (resp., KU-ideal) of X such that $\{\psi(x) \mid \psi(x) < \frac{1-k}{2}\} \geq 2$ then ψ can be expressed as the union of two proper non-equivalent $(\in, \in \lor \lambda)$-fuzzy KU-subalgebra (resp., KU-ideal) of X.

Proof. Let us define the fuzzy sets as

$$\mu(x) = \begin{cases} t_1 & \text{if } x \in [\psi]_{t_1}, \\ t_2 & \text{if } x \in [\psi]_{t_2} \setminus [\psi]_{t_1}, \\ \vdots & \vdots \\ t_r & \text{if } x \in [\psi]_{t_r} \setminus [\psi]_{t_{r-1}}, \end{cases}$$

and

$$\psi(x) = \begin{cases} \psi(x) & \text{if } x \in [\psi]_{\frac{1-k}{2}}, \\ t_2 & \text{if } x \in [\psi]_{t_2} \setminus [\psi]_{\frac{1-k}{2}}, \\ \vdots & \vdots \\ t_r & \text{if } x \in [\psi]_{t_r} \setminus [\psi]_{t_{r-1}}. \end{cases}$$

for $[\psi]_{\frac{1-k}{2}} \subseteq [\psi]_{t_1} \subseteq \ldots \subseteq [\psi]_{t_r} = X$ and $\{\psi(x) \mid \psi(x) < \frac{1-k}{2}\} = \{t_1, t_2, \ldots, t_r\}$ for $t_1 > t_2 > \ldots > t_r$ with $r \geq 2$. Then by level cut theorem μ and λ are $(\in, \in \lor \lambda)$-fuzzy KU-ideal of X and the chain of $(\in, \in \lor \lambda)$-level KU-ideals μ and λ are given by respectively as $[\psi]_{t_1} \subseteq [\psi]_{t_2} \subseteq \ldots \subseteq [\psi]_{t_r}$ and $[\psi]_{\frac{1-k}{2}} \subseteq [\psi]_{t_2} \subseteq \ldots \subseteq [\psi]_{t_r}$. They are non-equivalent and $\psi = \mu \cup \lambda$. This completes the proof. The other case can be seen in a similar way.

References

Muhammad Gulistan
Department of Mathematics,
Hazara University,
Mansehra, Pakistan
e-mail: gulistanmath@hu.edu.pk

Muhammad Shahzad
Department of Mathematics,
Hazara University,
Mansehra, Pakistan
e-mail: shahzadmaths@hu.edu.pk

Naveed Yaqoob
Department of Mathematics,
Quaid-i-Azam University
Islamabad, Pakistan
e-mail: nayaqoob@ymail.com