SOME NEW DISTORTION THEOREMS FOR STARLIKE HARMONIC FUNCTIONS OF ORDER ALPHA

H. E. Özkan Uçar, M. Aydoğan, Y. Polatoğlu

Abstract. Let \(f(z) = h(z) + g(z) \) where \(h(z) \) and \(g(z) \) are analytic functions in \(U \). If \(f(z) \) satisfies the condition \(|h'(z)|^2 - |g'(z)|^2 > 0\), then \(f(z) \) is called sense-preserving harmonic univalent function and denoted by \(S_H \). We also note that \(f(z) = h(z) + g(z) \in S_H \) if and only if \(g'(z) = \omega(z)h'(z) \) where \(\omega(z) \) is second dilatation of \(f(z) \). Moreover, let \(H(U) \) be the linear space of all analytic functions defined on the simply connected domain \(U \subset \mathbb{C} \). A log-harmonic mapping \(F \) is a solution of the non-linear elliptic partial differential equation \(\frac{F_z}{F} = \omega_1(z) \frac{F_z}{F} \), where the second dilatation function \(\omega_1(z) \in H(U) \) is such that \(|\omega_1(z)| < 1\) for all \(z \in U \). It has been shown that if \(F \) is non-vanishing log-harmonic mapping, then \(F \) can be expressed on \(F = H(z)G(z) \), where \(H(z) \) and \(G(z) \) are analytic functions in \(U \) with the normalization \(H(0) = G(0) = 1 \), and the class of non-vanishing log-harmonic functions is denoted by \(S_{LH}^* \).

The aim of this paper is to give the relation between the classes \(S_H^* \) and \(S_{LH}^* \) the new distortion theorems of starlike harmony univalent functions of LH order \(\alpha \).

2010 Mathematics Subject Classification: 30C45.

Keywords: Harmonic functions, Log-harmonic functions, Univalent functions, Distortion theorem.

1. **Introduction**

Let \(S^*(\alpha) \) denote the class of functions \(s(z) = z + a_2z^2 + \ldots \) which are analytic in the open unit disc \(U = \{ z : |z| < 1 \} \) and satisfy

\[
\Re \left(\frac{s'(z)}{s(z)} \right) > \alpha
\]

for all \(z \in U \).
Next, let Ω be the family of functions $\phi(z)$ which are analytic in U and satisfy the conditions $\phi(0) = 0$, $|\phi(z)| < 1$ for all $z \in U$. Let \mathcal{P} denote the family of functions $p(z) = 1 + p_1 z + p_2 z^2 + \ldots$ which are regular and satisfy the conditions $\text{Re} \, p(z) > \alpha$, $p(0) = 1$ for all $z \in U$, and we note that $p(z) \in \mathcal{P}$ if and only if

$$ p(z) = \frac{1 + (1 - 2\alpha)\phi(z)}{1 - \phi(z)} \quad (2) $$

for some function $\phi(z) \in \Omega$ and every $z \in U$, see [4].

Moreover, let $f_1(z) = z + d_2 z^2 + \ldots$ and $f_2(z) = z + e_2 z^2 + \ldots$ be analytic functions in U. If there exists a function $\phi(z) \in \Omega$ such that $f_1(z) = f_2(\phi(z))$, we then say that $f_1(z)$ is subordinate to $f_2(z)$ and we write $f_1(z) \prec f_2(z)$.

Finally, a function f is said to be a complex valued harmonic function in U if both $\text{Re} \, f$ and $\text{Im} \, f$ are real harmonic in U. Every such f can be uniquely represented by $f = h(z) + \overline{g(z)}$, where $h(z)$ and $g(z)$ are analytic with the normalization $h(0) = g(0) = 0$, $h'(0) = 1$. A complex-valued harmonic function f which is not identically constant and satisfies $f = h(z) + g(z)$ is said to be sense-preserving in U if it satisfies the equation

$$ g'(z) = \omega(z)h'(z) \quad (3) $$

where $\omega(z)$ is analytic in U with $|\omega(z)| < 1$ for every $z \in U$ and $\omega(z)$ is called the second dilatation of f. The Jacobian of f is defined by

$$ J_f(z) = |h'(z)|^2 - |g'(z)|^2 \quad (4) $$

Let $H(U)$ be the linear space of all analytic functions defined on the open unit disc U. A log-harmonic mapping F is the solution of the non-linear elliptic partial differential equation

$$ \frac{F_z}{F} = \omega(z) \frac{F_z}{F} \quad (5) $$

where $\omega(z)$ is the second dilatation of F and $\omega(z) \in H(U)$, $|\omega(z)| < 1$ for every $z \in U$. It has been show that if F is a non-vanishing log-harmonic function, then F can be expressed as

$$ F = H(z) \cdot G(z) \quad (6) $$

where $H(z)$ and $G(z)$ are analytic in U with the normalization $H(0) = G(0) = 1$. The class of non-vanishing log-harmonic functions is denoted by S^0_{LH}. Also, the class of log-harmonic functions is denoted by S_{LH}. For details, see [1], [2], and [3].

In [5], Jack’s lemma states that for the (non-constant) function $\omega(z)$ which is analytic in U with $\omega(0) = 0$, if $|\omega(z)|$ attains its maximum value on the circle $|z| = r < 1$ at a point $z_0 \in U$, then $z_0 \omega'(z_0) = k \omega(z_0)$, where k is a real number and $k \geq 1$.

172
2. Main Results

Theorem 1. \(f = h(z) + \bar{g}(z) \in S_0^* \iff F = H(z)\overline{G(z)} = e^{h(z) + \bar{g}(z)} \in S_{LH}^0 \).

Proof. Let \(f = h(z) + \overline{g(z)} \in S_H \). Then we have
\[
\omega(z) = \frac{g'(z)}{h'(z)}. \tag{7}
\]
Now we define the function
\[
\begin{align*}
H(z) &= e^{h(z)} \\
G(z) &= e^{g(z)}
\end{align*}
\Rightarrow F = H(z) \cdot \overline{G(z)} = e^{h(z) + \bar{g}(z)}, \tag{8}
\]
then we have
\[
\begin{align*}
\log H(z) &= h(z) \implies h'(z) = \frac{H'(z)}{H(z)} \\
\log G(z) &= g(z) \implies g'(z) = \frac{G'(z)}{G(z)}, \tag{9}
\end{align*}
\]
\[
\begin{align*}
H(0) &= e^{h(0)} = e^0 = 1 \\
G(0) &= e^{g(0)} = e^0 = 1 \implies F(0) = H(0)\overline{G(0)} = 1, \tag{10}
\end{align*}
\]
\[
\omega(z) = \frac{g'(z)}{h'(z)} = \frac{G'(z)/G(z)}{H'(z)/H(z)} \iff \frac{F_z}{F} = \omega(z) \frac{F_z}{F}. \tag{11}
\]
Therefore, \(F = H(z)\overline{G(z)} \in S_{LH}^0 \).

Conversely, let \(F = H(z)\overline{G(z)} \in S_{LH}^0 \). Then we define the following functions
\[
\begin{align*}
\log H(z) &= h(z) \\
\log G(z) &= g(z)
\end{align*} \tag{12}
\]
Then,
\[
\begin{align*}
h(0) &= \log H(0) = \log 1 = 0 \\
g(0) &= \log G(0) = \log 1 = 0
\end{align*}
\]
h(z) and g(z) are analytic in U and also we have (11). Using (9) in (11) we obtain
\[
\omega(z) = \frac{g'(z)}{h'(z)} \text{ this shows that } f = h(z) + \overline{g(z)} \in S_H.
\]

Lemma 2. The starlike condition of \(F = H(z)\overline{G(z)} = e^{h(z) + \bar{g}(z)} \) is
\[
\text{Re}(zh'(z) - zg'(z)) > 0. \tag{13}
\]

173
Proof.

\[F = H(z)G(z) = e^{h(z) + g(z)} \]

\[\Rightarrow F_z = h'(z)e^{h(z) + g(z)} \Rightarrow zF_z = zh'(z)e^{h(z) + g(z)} \]

\[F_\bar{z} = g'(\bar{z})e^{h(z) + g(z)} \Rightarrow \overline{F_\bar{z}} = \overline{zg'(\bar{z})e^{h(z) + g(z)}} \]

\[\Rightarrow \frac{zF_z - \overline{zF_\bar{z}}}{F} = \frac{e^{h(z) + g(z)} \cdot [zh'(z) - \overline{zg'(z)}]}{e^{h(z) + g(z)}} = zh'(z) - \overline{zg'(z)} \]

\[\Rightarrow \text{Re} \left(\frac{zF_z - \overline{zF_\bar{z}}}{F} \right) = \text{Re}(zh'(z) - \overline{zg'(z)}) = \text{Re}(zh'(z) - zg'(z)) > 0. \]

Lemma 3. Let \(f = h(z) + g(z) \) be an element of \(S^*_H \). Then,

\[\text{Re}(zh'(z) - zg'(z)) = r \frac{\partial}{\partial r} \log |e^{h(z) - g(z)}| \quad (14) \]

Proof.

\[e^{h(re^{i\theta}) - g(re^{i\theta})} = \left| e^{h(re^{i\theta}) - g(re^{i\theta})} \right| e^{i\theta} \]

\[\Rightarrow \log(e^{h(re^{i\theta}) - g(re^{i\theta})}) = \log |e^{h(re^{i\theta}) - g(re^{i\theta})}|e^{i\theta} \]

\[\Rightarrow h(re^{i\theta}) - g(re^{i\theta}) = \log |e^{h(re^{i\theta}) - g(re^{i\theta})}| + i\theta \log e = \log |e^{h(re^{i\theta}) - g(re^{i\theta})}| + i\theta \]

\[\Rightarrow e^{i\theta} \cdot h'(re^{i\theta}) - e^{i\theta} \cdot g(re^{i\theta}) = \frac{\partial}{\partial r} \log |e^{h(re^{i\theta}) - g(re^{i\theta})}| \]

\[\Rightarrow re^{i\theta} \cdot h'(re^{i\theta}) - re^{i\theta} \cdot g'(re^{i\theta}) = r \frac{\partial}{\partial r} \log |e^{h(re^{i\theta}) - g(re^{i\theta})}| \]

\[\Rightarrow zh'(z) - zg'(z) = r \frac{\partial}{\partial r} \log |e^{h(z) - g(z)}| \]

\[\Rightarrow \text{Re}(zh'(z) - zg'(z)) = r \frac{\partial}{\partial r} \log |e^{h(z) - g(z)}| \]

\[\Rightarrow \text{Re}(zh'(z) - zg'(z)) = r \frac{\partial}{\partial r} \log |e^{h(z) - g(z)}|. \]

Theorem 4. Let \(f = h(z) + g(z) \) be an element of \(S^*_H \). The function \(f \) satisfies the condition

\[zh'(z) - zg'(z) < \frac{2(1 - \alpha)z}{1 - z} \quad (15) \]

if and only if \(F = ze^{h(z) + g(z)} \in S^*_LH(\alpha) \).
Proof. Let \(f \) satisfies (15). We define the function \(\phi(z) \in \Omega \) by
\[
e^{h(z) - g(z)} = (1 - \phi(z))^{-2(1 - \alpha)},
\]
where \((1 - \phi(z))^{-2(1 - \alpha)}\) has the value \(1\) at \(z = 0\) (we consider the corresponding Riemann branch). Then \(\phi(z) \) is analytic and \(\phi(0) = 0 \). If we take the logarithmic derivative of (16) and after the brief calculations we get
\[
h'(z) - g'(z) = \frac{-2(1 - \alpha)(-\phi'(z))}{1 - \phi(z)}
\]
and then
\[
zh'(z) - zg'(z) = \frac{2(1 - \alpha)z\phi'(z)}{1 - \phi(z)}.
\]
On the other hand, the function \(w := \frac{2(1 - \alpha)z}{1 - z} \) maps \(|z| = r\) onto the circle with the radius \(\rho = \rho(r) = \frac{2(1 - \alpha)r}{1 - r^2} \) and the center \(c = c(r) = \left(\frac{2(1 - \alpha)r^2}{1 - r^2}, 0 \right) \). Now it is easy to realize that the subordination (15) is equivalent to \(|\phi(z)| < 1\) for all \(z \in \mathbb{U}\). Indeed, let us assume to the contrary. Then there is a \(z_1 \in \mathbb{U}\) such that \(|\phi(z_1)| = 1\). By Jack’s Lemma, \(z_1\phi'(z_1) = k\phi(z_1)\) for some \(k \geq 1\), so for such \(z_1\) we have
\[
z_1h'(z_1) - z_1g'(z_1) = \frac{2(1 - \alpha)k\phi(z_1)}{1 - \phi(z_1)} = kw(\phi(z_1)) \notin S(\mathbb{U})
\]
but this contradicts to (15); so our assumption is wrong, i.e., \(|\phi(z)| < 1\) for every \(z \in \mathbb{U}\). By using the condition (15) we get
\[
1 + zh'(z) - zg'(z) = \frac{1 + (1 - 2\alpha)\phi(z)}{1 - \phi(z)}.
\]
On the other hand, using Theorem 1, Lemma 2, and Lemma 3 and after simple calculations we get
\[
F = zh(z)G(z) = ze^{h(z) + g(z)} \in S^*_{LH}
\]
\[\Rightarrow \log F = \log z + \log H(z) + \log G(z) = \log z + \log h(z) + \log g(z)\]
\[
\Rightarrow \begin{cases}
\frac{F_z}{F} = \frac{1 + H'(z)}{zH(z)} = \frac{1 + h'(z)}{z} \Rightarrow zF_z = 1 + zH'(z) = 1 + zh'(z) \\
\frac{F_z}{G(z)} = \frac{G'(z)}{G(z)} = g'(z) \Rightarrow zF_z = zG'(z) = zg'(z)
\end{cases}
\]
\[\Re \left(\frac{zF_z - \overline{zF_z}}{F} \right) = \Re \left(1 + \frac{H'(z) - \overline{G'(z)}}{H(z)} \right) = \Re(1 + z h'(z) - \overline{z g'(z)}). \] (19)

Considering (18) and (19) together we obtain the desired result.

For the converse, let \(F = z e^{h(z) + g(z)} \) be an element of \(S_{LH}^*(\alpha) \). It follows that

\[\Re \left(\frac{zF_z - \overline{zF_z}}{F} \right) > \alpha \text{ and } \]

\[\frac{zF_z - \overline{zF_z}}{F} = \frac{1 + (1 - 2\alpha)\phi(z)}{1 - \phi(z)}. \]

On the other hand,

\[\Re \left(\frac{zF_z - \overline{zF_z}}{F} \right) = \Re(1 + z h'(z) - \overline{z g'(z)}) > \alpha \]

\[\Rightarrow 1 + z h'(z) - z g'(z) = \frac{1 + (1 - 2\alpha)\phi(z)}{1 - \phi(z)} \]

\[\Rightarrow z h'(z) - z g'(z) = \frac{2(1 - \alpha)\phi(z)}{1 - \phi(z)}. \]

This shows that \(z h'(z) - z g'(z) < \frac{2(1 - \alpha)z}{1 - z} \).

Theorem 5. Let \(f(z) = h(z) + \overline{g(z)} \) be an element of \(S_{H}^*(\alpha) \). Then,

\[\frac{(1 + r)^{2\alpha - 3}}{r(1 - r)} \leq |e^{h(z) - \overline{g(z)}|} \leq \frac{(1 - r)^{2\alpha - 3}}{r(1 + r)}. \]

This inequality is sharp because if we consider the following simple calculations:

\[h(z) - g(z) = \log(1 - z)^{-2(1 - \alpha)} \]

\[\Rightarrow h(z) - g(z) = -2(1 - \alpha) \log(1 - z) \]

\[\Rightarrow h'(z) - g'(z) = \frac{2(1 - \alpha)}{1 - z} \]

\[\Rightarrow z h'(z) - z g'(z) = \frac{2(1 - \alpha)z}{1 - z} \]

\[\Rightarrow 1 + z h'(z) - z g'(z) = 1 + \frac{2(1 - \alpha)z}{1 - z} = \frac{1 + (1 - 2\alpha)z}{1 - z} \]

176
then the extremal function is the solution of the following differential equation
\[h(z) - g(z) = \log(1 - z)^{-2(1 - \alpha)} \]
\[g_\pi = \mathcal{F}_z - \mathcal{H}_z = 0. \]

Proof. The set of the values of the function \(\frac{2(1 - \alpha)z}{1 - z} \) is the closed disc with the center \(c \) and the radius \(\rho \), where
\[c = c(r) = \left(\frac{2(1 - \alpha)r^2}{1 - r^2}, 0 \right), \quad \rho = \rho(r) = \frac{2(1 - \alpha)r}{1 - r^2}. \]

Using the subordination, we can write
\[
\begin{align*}
\left| (zh'(z) - zg'(z) + 1) - \frac{2(1 - \alpha)r^2}{1 - r^2} \right| &\leq \frac{2(1 - \alpha)r}{1 - r^2} \\
\Rightarrow \left| (zh'(z) - zg'(z)) + 1 - \frac{2(1 - \alpha)r^2}{1 - r^2} \right| &\leq \frac{2(1 - \alpha)r}{1 - r^2} \\
\Rightarrow \left| (zh'(z) - zg'(z)) - \left(\frac{2(1 - \alpha)r^2}{1 - r^2} - 1 \right) \right| &\leq \frac{2(1 - \alpha)r}{1 - r^2} \\
\Rightarrow \left| (zh'(z) - zg'(z)) - \left(\frac{2(1 - \alpha)r^2 - 1 + r^2}{1 - r^2} - 1 \right) \right| &\leq \frac{2(1 - \alpha)r}{1 - r^2} \\
\Rightarrow \left| (zh'(z) - zg'(z)) - \left(\frac{3 - 2\alpha r^2 - 1}{1 - r^2} - 1 \right) \right| &\leq \frac{2(1 - \alpha)r}{1 - r^2} \\
- \frac{2(1 - \alpha)r}{1 - r^2} \leq - \left| (zh'(z) - zg'(z)) - \left(\frac{3 - 2\alpha r^2 - 1}{1 - r^2} - 1 \right) \right| \\
\leq \text{Re} \left[(zh'(z) - zg'(z)) - \left(\frac{3 - 2\alpha r^2 - 1}{1 - r^2} - 1 \right) \right] \\
\left| (zh'(z) - zg'(z)) - \left(\frac{3 - 2\alpha r^2 - 1}{1 - r^2} - 1 \right) \right| &\leq \frac{2(1 - \alpha)r}{1 - r^2} \\
\Rightarrow - \frac{2(1 - \alpha)r}{1 - r^2} \leq \text{Re}[zh'(z) - zg'(z)] - \frac{3 - 2\alpha r^2 - 1}{1 - r^2} \leq \frac{2(1 - \alpha)r}{1 - r^2} \\
\Rightarrow \frac{(3 - 2\alpha)r^2 - 1}{1 - r^2} - \frac{2(1 - \alpha)r}{1 - r^2} \leq \text{Re}[zh'(z) - zg'(z)] \leq \frac{(3 - 2\alpha)r^2 - 1}{1 - r^2} + \frac{2(1 - \alpha)r}{1 - r^2} \\
\Rightarrow \frac{(3 - 2\alpha)r^2 - 2(1 - \alpha)r - 1}{1 - r^2} \leq \text{Re}[zh'(z) - zg'(z)] \leq \frac{(3 - 2\alpha)r^2 + 2(1 - \alpha)r - 1}{1 - r^2}
\]
(20)
On the other hand, from Lemma 3 we have
\[\text{Re}[zh'(z) - zg'(z)] = r \frac{\partial}{\partial r} \log |e^{h(z)-g(z)}|. \] (21)

Considering (20) and (21) together, then the inequality (20) can be written in the following form
\[
\frac{(3 - 2\alpha)r^2 - 2(1 - \alpha)r - 1}{1 - r^2} \leq r \frac{\partial}{\partial r} \log |e^{h(z)-g(z)}| \leq \frac{(3 - 2\alpha)r^2 + 2(1 - \alpha)r - 1}{1 - r^2}
\] (22)

Since
\[
\frac{(3 - 2\alpha)r^2 - 2(1 - \alpha)r - 1}{r(1 - r^2)} = -\frac{1}{r} + \frac{1}{1 - r} + \frac{2\alpha - 3}{1 + r},
\]

It follows that
\[
\int \frac{(3 - 2\alpha)r^2 - 2(1 - \alpha)r - 1}{r(1 - r^2)} \, dr = \log \frac{(1 + r)^{2\alpha - 3}}{r(1 + r)}
\] (23)

Similarly, since
\[
\frac{(3 - 2\alpha)r^2 + 2(1 - \alpha)r - 1}{r(1 - r^2)} = -\frac{1}{r} - \frac{1}{1 - r} + \frac{3 - 2\alpha}{1 - r},
\]

it follows that
\[
\int \frac{(3 - 2\alpha)r^2 + 2(1 - \alpha)r - 1}{r(1 - r^2)} \, dr = \log \frac{(1 - r)^{2\alpha - 3}}{r(1 + r)}.
\] (24)

Considering (22), (23), (24) and integrating both sides of (22) we obtain
\[
\frac{(1 + r)^{2\alpha - 3}}{r(1 - r)} \leq \left| e^{h(z)-g(z)} \right| \leq \frac{(1 - r)^{2\alpha - 3}}{r(1 + r)}.
\]

Corollary 6. Let \(f(z) = h(z) + \overline{g(z)} \) be an element of \(S_H^*(\alpha) \). Then,
\[
\left| (e^{h(z)-g(z)})^{\frac{1}{2\alpha(1-\alpha)}} - 1 \right| < 1.
\]

This inequality is the Marx-Strohhacker inequality [4] for the starlike harmonic univalent functions of order \(\alpha \).
Proof. Using Theorem 4, we have
\[e^{h(z)-g(z)} = (1 - \phi(z))^{-2(1-\alpha)}. \]
This equality shows that
\[e^{h(z)-g(z)} = \frac{1}{(1 - \phi(z))^{-2(1-\alpha)}} \Rightarrow \frac{1}{(e^{h(z)-g(z)})^{2(1-\alpha)} - 1} = | - \phi(z) | < 1. \]

Corollary 7. Let \(f(z) = h(z) + \overline{g(z)} \) be an element of \(S_{H}(\alpha) \). Then,
\[|h'(z) - g'(z)| < \frac{2(1 - \alpha)}{1 - r}. \]

Proof. Let \(s(z) := (e^{h(z)-g(z)})^{2(1-\alpha)} - 1 \). Then by Corollary 7 and (16), we have \(s(0) = 0, |s(z)| < 1 \) and \(s(z) = z\phi(z) \). Since
\[z\phi(z) = \frac{1}{(e^{h(z)-g(z)})^{2(1-\alpha)} - 1} \]
?we have
\[h(z) - g(z) = 2(1 - \alpha) \log(1 + z\phi(z)). \]
So,
\[h'(z) - g'(z) = \frac{2(1 - \alpha)(\phi(z) + z\phi'(z))}{1 + z\phi(z)} \]
and hence
\[|h'(z) - g'(z)| \leq \frac{2(1 - \alpha)}{1 - r}. \]

Acknowledgements The work presented here was partially supported by İsk University Scientific Research Funding Agency under Grant Number: BAP-14B102.

References

H. Esra Özkanc Uçar
Department of Mathematics and Computer Science
İstanbul Kültür University,
İstanbul, Turkey
email: e.ozkan@iku.edu.tr

Melike Aydoğan
Department of Mathematics,
İşık University,
İstanbul, Turkey
email: melike.aydogan@isikun.edu.tr

Yaşar Polatolu
Department of Mathematics and Computer Science
İstanbul Kültür University,
İstanbul, Turkey
email: y.polatoglu@iku.edu.tr