A SANDWICH THEOREM ON THE ϕ-LIKE FUNCTIONS INVOLVING $I_N \ast \mathcal{L}_C(A, B)$ OPERATOR

A. Shokri, M. Heydari, A. A. Shokri, A. Rahimi, F. Pashaie

Abstract. In this paper, we introduce a new convolution operator $I_n \ast \mathcal{L}_C(a, b)$. Several subordination and superordination results involving this operator are proved.

2010 Mathematics Subject Classification: 30C45.

Keywords: Analytic functions, Hadamard product (or Convolution), Subordination and superordination between analytic functions.

1. Introduction

\[f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \] \hspace{1cm} (1)

which are analytic in the open unit disk $U := \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Let $H(U)$ be the linear space of all analytic functions in U. For a positive integer number n and $a \in \mathbb{C}$, we let

\[H[a, n] := \left\{ f \in H(U) : f(z) = a + \sum_{k=n}^{\infty} a_k z^k \right\}. \]

Let $f, g \in A$, where f is given by (1) and g is defined by

\[g(z) = z + \sum_{k=2}^{\infty} b_k z^k. \]

Then the Hadamard product (or convolution) $f \ast g$ of the functions f and g is defined by

\[(f \ast g)(z) := z + \sum_{k=2}^{\infty} a_k b_k z^k = (g \ast f)(z). \]
For two functions f and g, analytic in U, we say that the function f is subordinate to g in U, and we denote it by $f(z) \prec g(z)$, if there exists a Schwarz function w, which is analytic in U with $w(0) = 0$ and $|w(z)| < 1$ for $(z \in U)$, such that [1-15]

$$f(z) = g(w(z)), \quad (z \in U).$$

Indeed, it is known that

$$f(z) \prec g(z) \Rightarrow f(0) = g(0) \quad \text{and} \quad f(U) \subset g(U).$$

Furthermore, if the function g is univalent in U, then we have the following equivalence:

$$f(z) \prec g(z) \iff f(0) = g(0) \quad \text{and} \quad f(U) \subset g(U).$$

Let $\varphi : \mathbb{C}^2 \to \mathbb{C}$ and let h be univalent in U. If p is analytic in U and satisfies the differential subordination $\varphi(p(z), zp'(z)) \prec h(z)$ then p is called a solution of the differential subordination [12-18]. The univalent function q is called a dominant of the solutions of the differential subordination, $p \prec q$. If p and $\varphi(p(z), zp'(z))$ are univalent in U and satisfy the differential superordination $h(z) \prec \varphi(p(z), zp'(z))$ then p is called a solution of the differential superordination. An analytic function q is called subordinant of the solution of the differential superordination if $q \prec p$ [19-26].

Denote by $D^\alpha : A \to A$ the operator defined by

$$D^\alpha f(z) := \frac{z}{(1-z)^{\alpha+1}} \ast f(z), \quad \alpha > -1,$$

where (\ast) refers to the Hadamard product or convolution. Then implies that

$$D^n f(z) = \frac{z}{n!} \left(\frac{z^{-1} f^{(n)}(z)}{1-z}\right), \quad n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}.$$

We note that $D^0 f(z) = f(z)$ and $D' f(z) = zf'(z)$. The operator $D^n f$ is called Ruscheweyh derivative of n’th order of f [27-29]. Ali et al [2, 3] defined and studied an integral operator $I_n : A \to A$ analogous to $D^n f$ as follows: Let $f_n(z) = \frac{z}{(1-z)^{n+1}}$, $n \in \mathbb{N}_0$ and let $f_n^{(-1)}$ be defined such that

$$f_n(z) \ast f_n^{(-1)}(z) = \frac{z}{(1-z)}.$$ \hspace{1cm} \text{(2)}$$

Then

$$I_n f(z) = f_n(z) \ast f_n^{(-1)}(z) = \left[\frac{z}{(1-z)^{n+1}}\right]^{(-1)} \ast f(z).$$
Note that \(I_0 f(z) = zf'(z) \) and \(I_1 f(z) = f(z) \). The operator \(I_n \) is called the Noor Integral of \(n \)'th order of \(f \). Using (1), (2) and a well-known identity for \(D^n f \), we have

\[
(n + 1) I_n f(z) - n I_{n+1}(z) = z(I_{n+1}(z))'.
\]

(3)

Using hypergeometric functions \(_2F_1 \), (2) becomes

\[
I_n f(z) = \left[\frac{z}{1-\frac{z}{2}} \right] \cdot f(z),
\]

where \(_2F_1(a, b; c, z) \) is defined by

\[
_2F_1(a, b; c, z) = \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{(c)_k k!} z^k,
\]

For two functions \(f_j(z), (j = 1, 2) \), given by

\[
f_j(z) = z + \sum_{k=2}^{\infty} a_{kj} z^k, \quad (j = 1, 2).
\]

In terms of the Pochhammer symbol (or the shifted factorial), define \((k)_n \) by

\[
(k)_0 = 1, \quad (k)_n = k(k + 1)(k + 2) \cdots (k + n - 1), \quad (n \in \mathbb{N}),
\]

and then define a function \(\phi_c(a, b) \) by

\[
\phi_c(a, b) = 1 + \sum_{n=1}^{\infty} (c + n) \frac{(a)_n}{(b)_n n!} (z^n + 1).
\]

(4)

Hence

\[
Z(\phi_c(a, b))' = a\phi_c(a + 1, b) - a \phi_c(a, b)
\]

(6)

It is easy to see that

\[
Z(\phi_c(a, b))' = a \phi_c(a + 1, b) - a \phi_c(a, b)
\]

(7)

we define the Hadamard product (or convolution) of \(I_n f(z) \) and \(L_c(a, b) f(z) \) by

\[
I_n f(z) * L_c(a, b) f(z) = \left[\frac{z}{(1-z)^{n+1}} \right] \cdot f(z) * \phi_c(a, b) * \frac{f(z)}{z}
\]

\[
= \left(\frac{f(z)}{z} \right)^2 (1-z)^{n+1} \cdot \phi_c(a, b)
\]

\[
= \left[\left(\frac{f(z)}{z} \right)^2 (1-z)^{n+1} \right] \cdot \left[1 + \sum_{n=1}^{\infty} \frac{(c + n)(a)_n}{(b)_n n} \right]
\]

(8)
Furthermore, we have
\[
\frac{z[I_n+1 \ast \mathcal{L}_c(a,b)f(z)]'}{\phi[I_n+1 \ast \mathcal{L}_c(a,b)f(z)]} = (n+1)(c+1)\frac{z[I_n \ast \mathcal{L}_c(a,b)f(z)]'}{[I_n \ast \mathcal{L}_c(a,b)f(z)]} - (n+1)(c+1).
\]

Definition 1. Let \(\phi \) be an analytic function in a domain containing \(f(U) \), \(\phi(0) = 0 \) and \(\phi'(0) > 0 \). The function \([I_n \ast \mathcal{L}_c(a,b)f] \in A \) is called \(\phi \)-like if
\[
\operatorname{Re} \frac{z[I_n \ast \mathcal{L}_c(a,b)f(z)]'}{\phi[I_n \ast \mathcal{L}_c(a,b)f(z)]} > 0, \quad (z \in U).
\] (9)

Definition 2. Let \(\phi \) be analytic function in a domain containing \(f(U) \), \(\phi(0) = 0 \), \(\phi'(0) = 1 \) and \(\phi(\omega) \neq 0 \) for \(\omega \in f(U) - 0 \). Let \(q(z) \) be a fixed analytic function in \(U \), \(q(0) = 1 \). The function \([I_n \ast \mathcal{L}_c(a,b)f] \in A \) is called \(\phi \)-like with respect to
\[
\frac{z[I_n \ast \mathcal{L}_c(a,b)f(z)]'}{\phi[I_n \ast \mathcal{L}_c(a,b)f(z)]} \prec q(z), \quad (z \in U).
\] (10)

2. Preliminaries

To derive our main results, we need the following definitions and lemmas.

Definition 3. A function \(L(z,t) \), \((z \in U, \ t \geq 0) \) is said to be a subordination chain if \(L(0,t) \) is analytic and univalent in \(U \) for all \(t \geq 0 \), \(L(z,0) \) is continuously differentiable on \([0,1)\) for all \(z \in U \) and \(L(z,t_1) \prec L(z,t_2) \) for all \(0 \leq t_1 \leq t_2 \).

Remark 1. Denote by \(Q \) the set of all functions \(f \) that are analytic and injective on \(\overline{U} - E(f) \), where
\[
E(f) = \{ \varepsilon \in \partial U : \lim_{z \to \varepsilon} f(z) = \infty \},
\] and such that \(f'(\varepsilon) \neq 0 \) for \(\varepsilon \in \partial U - E(f) \). The subclass of \(Q \) for which \(f(0) = a \), \((a \in \mathbb{C}) \), is denoted by \(Q(a) \).

Lemma 1. The function \(L(z,t) : U \times [0,\infty) \to \mathbb{C} \) of the form
\[
L(z,t) = a_1(t)z + a_2(t)z^2 + \cdots, \quad (a_1(t) \neq 0; \ t \geq 0),
\] and \(\lim_{t \to \infty} |a_1(t)| = \infty \) is a subordination chain if and only if
\[
\operatorname{Re} \left(\frac{z\partial L/\partial z}{\partial L/\partial t} \right) > 0, \quad (z \in U; \ t \geq 0).
\]
Lemma 2. Suppose that the function $H : \mathbb{C}^2 \to \mathbb{C}$ satisfies the condition $\text{Re}(H(is,t)) \leq 0$ for all real s and for all $t \leq -\frac{n(1 + s^2)}{2}$, $(n \in \mathbb{N})$.

If the function
\[p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \cdots, \]
is analytic in U and $\text{Re}(H(p(z), zp'(z))) > 0$, $(z \in U)$, then $\text{Re}(p(z)) > 0$, $(z \in U)$.

Lemma 3. Let $k, \gamma \in \mathbb{C}$ with $k \neq 0$ and let $h \in H(U)$ with $h(0) = c$. If $\text{Re}(kh(z) + \gamma) > 0$, $(z \in U)$, then the solution of the following differential equation:
\[q(z) + \frac{zq'(z)}{kq(z) + \gamma} = h(z), \quad (z \in U, \; q(0) = c), \]
is analytic in U and satisfies the inequality given by $\text{Re}(kq(z) + \gamma) > 0$, $(z \in U)$.

Lemma 4. Let $p \in Q(a)$ and
\[q(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots, \quad (q \neq a, \; n \in \mathbb{N}). \]
be analytic in U. If q is not subordinate to p, then there exists two points
\[z_0 = r_0 e^{i\theta} \in U, \quad \text{and} \quad \varepsilon_0 \in \partial U/\mathcal{E}(f), \]
such that $q(U_{r_0}) \subset p(U)$, $q(z_0) = p(\varepsilon_0)$ and $z_0q'(z_0) = m_0 \varepsilon_0 p'(\varepsilon_0)$, $(m \geq n)$.

Lemma 5. Let $q \in H[a,1]$ and $\phi : \mathbb{C}^2 \to \mathbb{C}$. Also set
\[\phi(q(z), zq'(z)) \equiv h(z), \quad (z \in U). \]

Let
\[L(z,t) := \phi(q(z), tzq'(z)), \]
be a subordination chain and $p \in H[a,1] Q(a)$. Then $h(z) \prec \phi(p(z), zp'(z))$ implies that $q(z) \prec p(z)$. Furthermore, if $\phi(q(z), zq'(z)) = h(z)$ has a univalent solution $q \in Q(a)$, then q is the best subordinate.

3. Main Results

We begin by presenting our first subordination property given by Theorem 6, below. For convenience, let

\[A_0 := \{ f \in A : [I_n \ast L_c(a, b)]f(z) \neq 0, \quad (z \in U) \}. \]

Theorem 6. Let \(f, g \in A \) and \(a \in \mathbb{C}, \ \text{Re}(nc) > 0 \). Further let

\[\Re \left(1 + \frac{z\varphi''(z)}{\varphi'(z)} \right) > -\delta, \quad (z \in U, \ \varphi(z) := \frac{z[I_n \ast L_c(a, b)g(z)]'}{\phi[I_n \ast L_c(a, b)g(z)]}, \quad (11) \]

where

\[\delta := \frac{1 + (nc)^2 - |1 - (nc)^2|}{4\Re(nc)}. \quad (12) \]

Then the subordination

\[\frac{z[I_n \ast L_c(a, b)f(z)]'}{\phi[I_n \ast L_c(a, b)f(z)]} \prec \frac{z[I_n \ast L_c(a, b)g(z)]'}{\phi[I_n \ast L_c(a, b)g(z)]}, \]

implies that

\[\frac{z[I_{n+1} \ast L_{c+1}(a, b)f(z)]'}{\phi[I_{n+1} \ast L_{c+1}(a, b)f(z)]} \prec \frac{z[I_{n+1} \ast L_{c+1}(a, b)g(z)]'}{\phi[I_{n+1} \ast L_{c+1}(a, b)g(z)]}. \]

Furthermore, the function \(\frac{z[I_{n+1} \ast L_{c+1}(a, b)g(z)]'}{\phi[I_{n+1} \ast L_{c+1}(a, b)g(z)]} \) is the best dominant.

Proof. Let the functions \(F, G \) and \(Q \) be defined by

\[F := \frac{z[I_{n+1} \ast L_{c+1}(a, b)f(z)]'}{\phi[I_{n+1} \ast L_{c+1}(a, b)f(z)]}, \quad G := \frac{z[I_{n+1} \ast L_{c+1}(a, b)g(z)]'}{\phi[I_{n+1} \ast L_{c+1}(a, b)g(z)]}, \quad \]

\[Q := 1 + \frac{z\varphi''(z)}{\varphi'(z)}. \quad (13) \]

We assume here, without loss of generality, that \(G \) is analytic and univalent on \(\bar{U} \) and \(G'(\varepsilon) \neq 0, \ (|\varepsilon| = 1) \). If not, then we replace \(F \) and \(G \) by \(F(\rho z) \) and \(G(\rho z) \), respectively, with \(0 < \rho < 1 \). These new functions have the desired properties on \(\bar{U} \), and we can use them in the proof of our result. Therefore, the result would follow by letting \(\rho \to 1 \). We first show that \(\Re(Q(z)) > 0, \ (z \in U) \). By virtue of (1) and the definitions of \(G \), we know that

\[\varphi(z) = G(z) + \frac{1}{nc}zG'(z). \quad (14) \]
Differentiating both sides of (14) with respect to z yields

$$\varphi'(z) = \left(1 + \frac{1}{nc}\right) G(z) + \frac{1}{nc} z G''(z).$$ \hspace{1cm} (15)

Combining (13) and (15), we easily get

$$1 + \frac{z\varphi''(z)}{\varphi'(z)} = Q(z) + \frac{zQ'(z)}{Q(z) + nc} = h(z), \quad (z \in U).$$ \hspace{1cm} (16)

It follows from (11) and (16) that

$$\text{Re} (h(z) + nc) > 0, \quad (z \in U).$$ \hspace{1cm} (17)

Moreover, by Lemma 2.5, we conclude that the differential equation (16) has a solution $Q \in H(U)$ with $h(0) = Q(0) = 1$. Let $H(u, v) := u + \frac{v}{u+nc} + \delta$, where δ is given by (12). From (16) and (17), we obtain

$$\text{Re}(H(Q(z), zQ'(z))) > 0, \quad (z \in U).$$

To verify the condition that

$$\text{Re}(H(is, t)) \leq 0, \quad \left(s \in \mathbb{R}; \ t \leq -\frac{n(1+s^2)}{2}\right),$$ \hspace{1cm} (18)

we proceed as follows:

$$\text{Re}(H(is, t)) = \text{Re}\left(is + \frac{t}{is + nc} + \sigma\right) = \frac{tn}{|is + nc|^2} + \sigma \leq -\frac{\psi(n, s)}{2|is + nc|^2},$$

where

$$\psi(n, s) := (n - 2\delta)s^2 - 4\sigma ns - 2\sigma n^2 + n.$$ \hspace{1cm} (19)

For δ given by (12), we note that the coefficient of s^2 in the quadratic expression $\psi(n, s)$ given by (19) is positive or equal to zero. Furthermore, we observe that the quadratic expression $\psi(n, s)$ by s in (19) is a perfect square, which implies that (18) holds. Thus, by Lemma 2.4, we conclude that $\text{Re}(Q(z)) > 0, \ (z \in U)$. Let $f \in H(U)$, then f is convex if and only if $f'(0) \neq 0$ and $\text{Re}\left\{1 + (f''(z))/(f'(z))\right\} > 0, \ z \in U$. Now by the definition of Q, we know that G is convex. To prove $F \prec G$, let the function L be defined by

$$L(z, t) := G(z) + \frac{t}{n} zG'(z), \quad (z \in U; \ 0 \leq t < \infty).$$ \hspace{1cm} (20)
Since \(G \) is convex and \(n > 0 \), then

\[
\frac{\partial L(z,t)}{\partial z} \bigg|_{z=0} = G'(0) \left(1 + \frac{t}{n} \right) \neq 0, \quad (z \in U; \ 0 \leq t < \infty),
\]

and

\[
\Re \left(\frac{z\partial L/\partial z}{\partial L/\partial t} \right) = \Re(n + tQ(z)) > 0, \quad (z \in U).
\]

Therefore, by Lemma 2.3, we deduce that \(P \) is a subordination chain. It follows from the definition of subordination chain that \(\varphi(z) = G(z) + \frac{1}{n} z G'(z) = L(z,0) \) and \(L(z,0) \prec L(z,t), (0 \leq t < \infty) \), which implies that

\[
L(\varepsilon, t) \notin L(U,0) = \varphi(U), \quad (\varepsilon \in U; \ 0 \leq t < \infty). \tag{21}
\]

If \(F \) is not subordinate to \(G \), by Lemma 2.6, we know that there exist two points \(z_0 \in U \) and \(\varepsilon_0 \in \partial U \) such that

\[
F(z_0) = G(\varepsilon_0) \quad \text{and} \quad z_0 F(z_0) = t\varepsilon_0 G'(\varepsilon_0), \quad (0 \leq t < \infty). \tag{22}
\]

Hence, by virtue of (1) and (22), we have

\[
L(\varepsilon_0, t) = G(\varepsilon_0) + \frac{t}{n} z_0 G'(\varepsilon_0) = F(z_0) + \frac{1}{n} z_0 F'(z_0) = \frac{I_{n+1} f(z_0)}{z_0} \in \varphi(U).
\]

This contradicts to (21). Thus, we deduce that \(F \prec G \). Considering \(F = G \), we see that the function \(G \) is the best dominant.

By similarly applying the method of proof of Theorem 3.1, as well as (1), we easily get the following result.

Corollary 7. Let \(f, g \in A \) and \(n > -1 \). Further let

\[
\Re \left(1 + \frac{z \chi''(z)}{\chi'(z)} \right) > -\bar{\omega}, \quad (z \in U; \ \chi(z) := \frac{I_n g(z)}{z}),
\]

where

\[
\bar{\omega} := \frac{1 + (n + 1)^2 - |1 - (n + 1)^2|}{4(n + 1)}. \tag{23}
\]

Then the subordination \(\frac{I_{n+1} f(z)}{z} \prec \frac{I_n g(z)}{z} \), implies that \(\frac{I_{n+1} f(z)}{z} \prec \frac{I_{n+1} g(z)}{z} \). Furthermore, the function \(\frac{I_{n+1} g(z)}{z} \) is the best dominant.

If \(f \) is subordinate to \(F \), then \(F \) is superordinate to \(f \). We now derive the following superordination result.

72
Theorem 8. Let $f, g \in A_p$ and $n > 0$. Further let
\[
Re \left(1 + \frac{z \varphi''(z)}{\varphi'(z)} \right) > -\delta, \quad \left(z \in U; \varphi(z) := \frac{I_{n+1}g(z)}{z} \right),
\] (24)
where δ is given by (12). If the function $\frac{I_{n+1}f(z)}{z}$ is univalent in U and $\frac{I_nf(z)}{z} \in Q$, then the subordination
\[
\frac{I_{n+1}g(z)}{z} \prec \frac{I_nf(z)}{z},
\]
implies that
\[
\frac{I_ng(z)}{z} \prec \frac{I_nf(z)}{z}.
\]
Furthermore, the function $\frac{I_ng(z)}{z}$ is the best subordinate.

Proof. Suppose that the functions F and G and Q are defined by (13). By applying the similar method as in the proof of Theorem 3.1, we get $Re(Q(z)) > 0$, $(z \in U)$. Next, to arrive at our desired result, we show that $G \prec F$. For this, we suppose that the function L be defined by (20). Since $n > 0$ and G is convex, by applying a similar method as in Theorem 3.1, we deduce that L is subordination chain. Therefore, by Lemma 2.7, we conclude that $G \prec F$. Moreover, since the differential equation
\[
\varphi(z) = G(z) + \frac{1}{n} z G''(z) = \phi(G(z), z G'(z)),
\]
has a univalent solution G, it is the best subordinate.

Applying a similar proof as in Theorem 3.2, and using (1), the following results are easily obtained.

Corollary 9. Let $A_p = \{ f \in H(U) : f(z) = a + \sum_{k=p}^{\infty} a_k z^k \}$, $f, g \in A_p$ and $n > 0$. Further let
\[
Re \left(1 + \frac{z \chi''(z)}{\chi'(z)} \right) > -\bar{\omega}, \quad \left(z \in U; \chi(z) := \frac{I_ng(z)}{z} \right),
\]
where $\bar{\omega}$ is given by (23). If the function $\frac{I_nf(z)}{z}$ is univalent in U and $\frac{I_{n+1}f(z)}{z} \in Q$, then the subordination
\[
\frac{I_ng(z)}{z} \prec \frac{I_nf(z)}{z},
\]
implies that
\[
\frac{I_{n+1}g(z)}{z} \prec \frac{I_{n+1}f(z)}{z}.
\]
Furthermore, the function $\frac{I_{n+1}g(z)}{z}$ is the best subordinate.
Combining the above mentioned subordination and super ordination results involving the operator I_n, the following "sandwich-type results" are derived.

Corollary 10. Let $f, g_k \in A, (k = 1, 2)$ and $n \geq 0$. Further let
\[
\Re \left(1 + z \frac{\varphi''(z)}{\varphi'(z)} \right) > -\delta, \quad \left(z \in U; \varphi(z) := \frac{I_{n+1}g_k(z)}{z}, \ k = 1, 2 \right),
\]
where δ is given by (12). If the function $\frac{I_{n+1}f(z)}{z}$ is univalent in U and $\frac{I_nf(z)}{z} \in Q$, then the subordination chain
\[
\frac{I_{n+1}g_1(z)}{z} \prec \frac{I_{n+1}f(z)}{z} \prec \frac{I_{n+1}g_2(z)}{z},
\]
implies that
\[
\frac{I_ng_1(z)}{z} \prec \frac{I_nf(z)}{z} \prec \frac{I_ng_2(z)}{z}.
\]
Furthermore, the functions $\frac{I_ng_1(z)}{z}$ and $\frac{I_ng_2(z)}{z}$ are, respectively, the best subordinate.

Corollary 11. Let $f, g_k \in A, (k = 1, 2)$ and $n \geq 0$. Further let
\[
\Re \left(1 + z \frac{\chi''(z)}{\chi'(z)} \right) > -\bar{\omega}, \quad \left(z \in U; \chi_k(z) := \frac{I_ng_k(z)}{z}, \ k = 1, 2 \right),
\]
where $\bar{\omega}$ is given by (12). If the function $\frac{I_nf(z)}{z}$ is univalent in U and $\frac{I_{n+1}f(z)}{z} \in Q$, then the subordination chain
\[
\frac{I_ng_1(z)}{z} \prec \frac{I_nf(z)}{z} \prec \frac{I_ng_2(z)}{z},
\]
implies that
\[
\frac{I_{n+1}g_1(z)}{z} \prec \frac{I_{n+1}f(z)}{z} \prec \frac{I_{n+1}g_2(z)}{z}.
\]
Furthermore, the functions $\frac{I_{n+1}g_1(z)}{z}$ and $\frac{I_{n+1}g_2(z)}{z}$ are, respectively, the best subordinate.

Acknowledgements

The authors wish to thank the anonymous referees for their careful reading of the manuscript and their fruitful comments and suggestions.
A. Shokri, M. Heydari, A. A. Shokri, A. Rahimi, F. Pashaie – A sandwich . . .

References

75

Ali Shokri
Faculty of Mathematical Science,
University of Maragheh, P.O.Box 55181-83111,
Maragheh, Iran.
email: shokri@maragheh.ac.ir

Mahdieh Heydari
Department of Mathematics,
Payame Noor University,
Tehran, Iran.
email: mahdiyehheidary@yahoo.com

Abbas Ali Shokri
Department of Mathematics,
Ahar Branch, Islamic Azad University, Ahar, Iran.
email: a-shokri@iau-ahar.ac.ir

Asghar Rahimi
Faculty of Mathematical Science,
University of Maragheh, P.O.Box 55181-83111,
Maragheh, Iran.
email: rahimi@maragheh.ac.ir

Firooz Pashaie
Faculty of Mathematical Science,
University of Maragheh, P.O.Box 55181-83111,
Maragheh, Iran.
email: f_pashaie@maragheh.ac.ir