APPLICATION OF SUPERORDINATION TO A SUBCLASS OF ANALYTIC FUNCTIONS INCLUDED DOUBLE INTEGRAL OPERATORS

R. Aghalary, P. Arjomandinia and H. Rahimpoor

Abstract. We suppose that the normalized analytic function \(f(z) \) satisfies the differential equation

\[f'(z) + \alpha zf''(z) + \lambda z^2 f'''(z) = g(z), \]

where \(g \) is univalent in the open unit disk \(\mathbb{D} \) and is superordinate to a convex-univalent function \(h(z) \) normalized by \(h(0) = 1 \). In addition, we assume that the function \(f(z) \) is given by a double integral operator of the form

\[f(z) = (1 + \delta_1)(1 + \delta_2) \int_0^1 \int_0^1 s^{\delta_1} t^{\delta_2} z G'(zt^{\mu}s^{\nu}) \, ds \, dt, \]

where \(G'(z) + zG''(z) = g(z) \). We shall determine the best subordinant of the solutions of differential superordination

\[h(z) \prec f'(z) + \alpha zf''(z) + \lambda z^2 f'''(z). \]

Some special cases are given in the corollaries.

2010 Mathematics Subject Classification: Primary 30C45, Secondary 30C80.

Keywords: convolution, convex-univalent functions, integral operator, superordination.

1. Introduction

Let \(\mathcal{A} \) be the class of all analytic functions \(f(z) \) of the form

\[f(z) = z + a_2 z^2 + \ldots + a_n z^n + \ldots; \quad (z \in \mathbb{D}), \]
which satisfy the normalization condition \(f(0) = f'(0) - 1 = 0 \), and that \(S \subseteq \mathcal{A} \) be the class of normalized univalent functions. Further, suppose that \(C \) denote the class of convex-univalent functions in \(\mathbb{D} \). For two analytic functions

\[
f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad g(z) = z + \sum_{k=2}^{\infty} b_k z^k
\]

the Hadamard product (or convolution) of \(f \) and \(g \) is an analytic function in \(\mathbb{D} \) defined by \((f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k\).

For \(f, g \in \mathcal{A} \) the function \(f \) is subordinate to \(g \) (or \(g \) is superordinate to \(f \)) written as \(f(z) \prec g(z) \) if there exist an analytic function \(w(z) \) in \(\mathbb{D} \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) such that \(f(z) = g(w(z)) \). If \(g \) is univalent in \(\mathbb{D} \), then \(f \prec g \) if and only if \(f(0) = g(0) \) and \(f(\mathbb{D}) \subseteq g(\mathbb{D}) \), (see \([3]\)).

Suppose that \(p, h \) are two analytic function in \(\mathbb{D} \) and \(\varphi : \mathbb{C}^3 \times \mathbb{D} \rightarrow \mathbb{C} \). If \(p(z) \) and \(\varphi(p(z), z p'(z), z^2 p''(z); z) \) are univalent in \(\mathbb{D} \) and if \(p(z) \) satisfies the second-order superordination

\[
h(z) \prec \varphi(p(z), z p'(z), z^2 p''(z); z),
\]

then \(p \) is called a solution of the differential superordination \((1)\). An analytic function \(q(z) \) is called a subordinant of \((1)\), if \(q(z) \prec p(z) \) for all the solutions of \((1)\). The best subordinant \(\tilde{q} \) is univalent subordinant that satisfies \(q \prec \tilde{q} \) for all the subordinants \(q \) of \((1)\), (see \([4]\)).

Definition 1. ([3]) We denote by \(Q \) the set of all functions \(p(z) \) that are analytic and injective on \(\overline{\mathbb{D}} \setminus E(p) \), where

\[
E(p) = \{ \xi \in \partial \mathbb{D} : \lim_{z \to \xi} p(z) = \infty \},
\]

and are such that \(p'(\xi) \neq 0 \) for \(\xi \in \partial \mathbb{D} \setminus E(p) \).

We will use the following results, but we omit their proofs.

Lemma 1. ([5]) Let \(f, g \in \mathcal{A} \) and \(F, G \in \mathcal{C} \). If \(f \prec F \) and \(g \prec G \), then \(f * g \prec F * G \).

Lemma 2. ([4]) Let \(h(z) \) be convex in \(\mathbb{D} \), with \(h(0) = a, \lambda \neq 0 \) and \(\Re(\lambda) \geq 0 \). If \(p \in Q(a) = \{ p \in Q : p(0) = a \} \), \(p(z) + \frac{1}{\lambda} z p'(z) \) is univalent in \(\mathbb{D} \) and

\[
h(z) \prec p(z) + \frac{1}{\lambda} z p'(z)
\]

then \(q(z) \prec p(z) \), where

\[
q(z) = \frac{\lambda}{n \pi^{\lambda/n}} \int_0^z h(w) w^{\frac{\lambda}{n} - 1} dw.
\]

The function \(q \) is convex in \(\mathbb{D} \) and is the best subordinant.
In a recently paper [1] authors used subordination and investigated starlikeness and other properties of functions $f \in \mathcal{A}$ given by a double integral operator. In this article, using superordination, conditions on a different integral operator are investigated. Let $\delta_1 > -1$ and $\delta_2 > -1$. We consider functions $f \in \mathcal{A}$ defined by the double integral operator of the form

$$f(z) = (1 + \delta_1)(1 + \delta_2) \int_0^1 \int_0^1 s^{\delta_1} t^{\delta_2} zG'(zt^{\mu} s^{\nu}) \, ds \, dt; \quad (G \in \mathcal{A}, z \in \mathbb{D}).$$ \hfill (2)

From (2) we see that

$$f'(z) = (1 + \delta_1)(1 + \delta_2) \int_0^1 \int_0^1 s^{\delta_1} t^{\delta_2} g(zt^{\mu} s^{\nu}) \, ds \, dt,$$

where $g(z) = G'(z) + zG''(z)$. In addition, we will see that there are suitable parameters α, λ such that

$$f'(z) + \alpha zf''(z) + \lambda z^2 f'''(z) = g(z).$$

2. Main results

Let $h(z)$ be a convex-univalent function in \mathbb{D} with $h(0) = 1$. For $\alpha \geq \lambda \geq 0$, consider $f'(z) + \alpha zf''(z) + \lambda z^2 f'''(z)$ is univalent in \mathbb{D}. We define the class $S(\alpha, \lambda, h)$ of functions $f \in \mathcal{A}$ as following

$$S(\alpha, \lambda, h) = \{f \in \mathcal{A} : h(z) \prec f'(z) + \alpha zf''(z) + \lambda z^2 f'''(z), \ z \in \mathbb{D}\}.$$

Put

$$\mu = \frac{1 + \delta_2}{2}((\alpha - \lambda) - \sqrt{\Delta}), \quad \alpha - \lambda = \frac{\nu}{1 + \delta_1} + \frac{\mu}{1 + \delta_2}, \quad (1 + \delta_1)(1 + \delta_2)\lambda = \mu \nu \quad (3)$$

where $\Delta = (\alpha - \lambda)^2 - 4\lambda$. It is seen that $\Re(\mu) \geq 0$ and $\Re(\nu) \geq 0$. Now we write the solution of

$$f'(z) + \alpha zf''(z) + \lambda z^2 f'''(z) = g(z)$$

in its double integral form. The relations (3) and (4) show that

$$g(z) = f'(z) + \left(\frac{\mu \nu}{(1 + \delta_1)(1 + \delta_2)} + \frac{\nu}{1 + \delta_1} + \frac{\mu}{1 + \delta_2}\right) z f''(z) + \frac{\mu \nu}{(1 + \delta_1)(1 + \delta_2)} z^2 f'''(z)$$

$$= \frac{\nu}{1 + \delta_1} z^{1 + \frac{1 + \delta_1}{\nu}} \left(\frac{\mu}{1 + \delta_2} z^{1 + \frac{1 + \delta_1}{\nu}} f''(z) + z^{1 + \frac{1 + \delta_1}{\nu} f'(z)}\right)'$$

$$= \frac{\nu}{1 + \delta_1} z^{1 + \frac{1 + \delta_1}{\nu}} \left(\frac{\mu}{1 + \delta_2} z^{1 + \frac{1 + \delta_1}{\nu} - \frac{1 + \delta_2}{\nu}} (z^{1 + \frac{1 + \delta_2}{\nu} f'(z)})'\right).$$
Theorem 3. Let

\[
\frac{\mu}{1 + \delta_2} z^{1 + \frac{1 + \delta_1}{\nu}} f'(z) = \frac{1 + \delta_1}{\nu} \int_0^z w^{1 + \frac{1}{\nu} - 1} g(w) \, dw.
\]

We have

\[
\subordinant.
\]

Then the function \(w \) is the best subordinant.

Proof. We have

\[
(1 + \delta_1)(1 + \delta_2) = \int_0^1 s^{\delta_1} h(z t^\mu s^\nu) \, ds \, dt.
\]

Therefore

\[
(\psi_{\delta_1,\nu}(z) \ast \psi_{\delta_2,\mu}(z)) \ast h(z) = \int_0^1 t^{\nu} \, dt = \int_0^1 t^{\delta_2} h(z t^\mu) \, dt.
\]

By Theorem \([3], 2.6h\) it is seen that \(\psi_{\delta,\lambda}(z) \in C \) provided that \(\Re(\lambda) \geq 0. \)

Theorem 3. Let \(\mu \) and \(\nu \) be defined as (3) and

\[
q(z) = (1 + \delta_1)(1 + \delta_2) \int_0^1 \int_0^1 s^{\delta_1} t^{\delta_2} h(z t^\mu s^\nu) \, ds \, dt.
\]

Then the function \(q(z) = (1 + \delta_1)(1 + \delta_2)(\psi_{\delta_1,\nu} \ast \psi_{\delta_2,\mu} \ast h)(z) \) is convex. If \(f \in S(\alpha, \lambda, h), f'(z) \in Q \) and \(f''(z) + \frac{\nu}{1 + \delta_1} z f''(z) \in Q \) then \(q(z) < f'(z) \) and \(q \) is the best subordinant.

Proof. We have

\[
(\psi_{\delta_1,\nu}(z) \ast \psi_{\delta_2,\mu}(z)) \ast h(z) = \int_0^1 t^{\nu} \, dt = \int_0^1 t^{\delta_2} h(z t^\mu) \, dt.
\]

The function \(q(z) \) is convex, since the functions \(\psi_{\delta_1,\nu}, \psi_{\delta_2,\mu} \) and \(h \) are convex univalent in \(\mathbb{D} \) (see \([2]\)). Put \(p(z) = f'(z) + \frac{\nu}{1 + \delta_1} z f''(z) \), then \(h(z) < p(z) + \frac{\mu}{1 + \delta_2} z p'(z) \). By Lemma 2 we obtain

\[
\frac{1 + \delta_2}{\mu z^{1 + \delta_2}} \int_0^z w^{1 + \delta_2 - 1} h(w) \, dw = (1 + \delta_2)(\psi_{\delta_2,\mu}(z) \ast h(z)) < p(z),
\]

\[
\int_0^z w^{1 + \delta_2 - 1} h(w) \, dw = (1 + \delta_2)(\psi_{\delta_2,\mu}(z) \ast h(z)) < p(z),
\]

\[
\int_0^z w^{1 + \delta_2 - 1} h(w) \, dw = (1 + \delta_2)(\psi_{\delta_2,\mu}(z) \ast h(z)) < p(z),
\]
or equivalently
\[(1 + \delta_2)(\psi_{\delta_2,\mu}(z) * h(z)) \prec f'(z) + \frac{\nu}{1 + \delta_1} z f'''(z).\]

Using again Lemma 2 we obtain
\[\frac{1 + \delta_1}{\nu z^{1+\delta_1}} \int_0^z (1 + \delta_2) w^{1+\delta_1 - 1}(\psi_{\delta_2,\mu} * h)(w) \, dw \prec f'(z)\]
or equivalently \(q(z) \prec f'(z)\). Since \(q(z) + \alpha zq'(z) + \lambda z^2 q''(z) = h(z)\), this means that \(q(z)\) is a solution of the differential superordination
\[h(z) \prec \varphi(p(z), zp'(z), z^2 p''(z); z) = p(z) + \alpha z p'(z) + \lambda z^2 p''(z)\] (6)
which \(f'(z)\) also satisfies (6). Therefore \(q(z)\) will be a dominant for all subordinants of \(h(z) \prec f'(z) + \alpha z f''(z) + \lambda z^2 f'''(z)\). Hence \(q(z)\) is the best subordinant of it.

Corollary 4. Suppose that all conditions of Theorem 3 are satisfied. Then
\[(1 + \delta_1)(1 + \delta_2) \int_0^1 \int_0^1 \int_0^1 s^{\delta_1} t^{\delta_2} h(z t \nu s^{-\nu}) \, dr \, dt \, ds = \int_0^1 q(tz)dt \prec \frac{f(z)}{z}.\]

Proof. Consider \(p(z) = \frac{f(z)}{z}\), then \(q(z) \prec p(z) + z p'(z) = f'(z)\). Lemma 2 shows that
\[\int_0^1 q(tz)dt = \frac{1}{z} \int_0^z q(w)dw \prec p(z) = \frac{f(z)}{z}.\]

Using Theorem 3 and Corollary 4 with \(h(z) = \frac{1 + Az}{1 + Bz}\) where \(-1 \leq B < A \leq 1\), we obtain the following result.

Corollary 5. Suppose that all conditions of Theorem 3 are satisfied. If
\[\frac{1 + Az}{1 + Bz} \prec f'(z) + \alpha z f''(z) + \lambda z^2 f'''(z)\]
then \(q(z; A, B) \prec f'(z)\), where
\[q(z; A, B) = \frac{A}{B} - \frac{(1 + \delta_1)(1 + \delta_2)(A - B)}{B} \int_0^1 \int_0^1 s^{\delta_1} t^{\delta_2} \, ds \, dt \; (B \neq 0)\]
and
\[q(z; A, 0) = 1 + \frac{A(1 + \delta_1)(1 + \delta_2)}{(1 + \delta_1 + \nu)(1 + \delta_2 + \mu)}\] \(f'(z)\),
also the functions $q(z; A, B)$ and $q(z; A, 0)$ are the best subordinants. In addition

$$\frac{A}{B} - \frac{(1 + \delta_1)(1 + \delta_2)(A - B)}{B} \int_0^1 \int_0^1 \int_0^1 s^\delta_1 t^\delta_2 \, dr \, ds \, dt < \frac{f(z)}{z}$$

if $B \neq 0$, and

$$1 + \frac{A(1 + \delta_1)(1 + \delta_2)z}{2(1 + \delta_1 + \nu)(1 + \delta_2 + \mu)} < \frac{f(z)}{z}$$

for $B = 0$.

Finally, the last theorem is about the convolution of two functions in $S(\alpha, \lambda, h)$.

Theorem 6. Let μ and ν are given by (3) and $f, g \in S(\alpha, \lambda, h)$. If $g'(z) \in Q$, $g'(z) + \frac{\nu}{1 + \delta_1} z g''(z) \in Q$ and $f'(z) + \alpha z f''(z) + \lambda z^2 f'''(z), \frac{g(z)}{z} \in C$, then $f * g$ belongs to $S(\alpha, \lambda, h_1)$ where $h_1(z) = q(z) * \int_0^1 h(tz)dt$ and $q(z)$ is given by (5).

Proof. It is easy to see that

$$(f * g)'(z) + \alpha z (f * g)''(z) + \lambda z^2 (f * g)'''(z) = (f'(z) + \alpha z f''(z) + \lambda z^2 f'''(z)) * \frac{g(z)}{z}.$$

Hence

$$h_1(z) = q(z) * \int_0^1 h(tz) \, dt$$

$$= (1 + \delta_1)(1 + \delta_2)(h(z) * \psi_{\delta_1, \nu}(z) * \psi_{\delta_2, \mu}(z)) * (h(z) * \psi_1(z))$$

$$= (1 + \delta_1)(1 + \delta_2)(h(z) * \int_0^1 \int_0^1 s^\delta_1 t^\delta_2 h(zrt^\mu s^\nu) \, dr \, ds \, dt)$$

(by Lemma 1) $$< (f'(z) + \alpha z f''(z) + \lambda z^2 f'''(z)) * \frac{g(z)}{z}$$

$$= (f * g)'(z) + \alpha z (f * g)''(z) + \lambda z^2 (f * g)'''(z),$$

where $\psi_1(z) = \int_0^1 \frac{dr}{1 - zr}$. This completes the proof.

References

Rasoul Aghalary
Department of Mathematics, Faculty of Science,
Urmia University,
Urmia, Iran
email: raghanary@yahoo.com

Parviz Arjomandinia
Department of Mathematics,
Urmia University,
Urmia, Iran
email: p.arjomandinia@urmia.ac.ir

Hossein Rahimpoor
Department of Mathematics,
Payam Noor University, P.O. BOX 19395-3697,
Tehran, Iran
email: rahimpoor2000@yahoo.com