APPLICATIONS OF CARLSON SHAFFER OPERATOR IN UNIVALENT FUNCTION THEORY

K. I. Noor and S. Riaz

Abstract. In this research paper, we introduce some new classes of k-starlike functions and k-uniformly close-to-convex functions in the unit disk \(E = \{ z : |z| < 1 \} \) by using Carlson-Shaffer operator. Some inclusion relationships, coefficient bounds and other interesting properties of these classes are investigated. Some known results are derived as special cases.

2010 Mathematics Subject Classification: Primary 30C45 ; Secondary 30C50

Keywords: univalent functions, uniformly close-to-convex, starlike functions, Carlson-Shaffer operator.

1. Introduction

Let \(A \) be the class of functions \(f(z) \) given by

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad |z| < 1.
\]

analytic in \(E = \{ z : |z| < 1 \} \). Let \(S, C, S^*, K \) be the subclasses of \(A \) of univalent, convex, starlike and close-to-convex functions respectively. The convolution (Hadamard product) given by

\[
(f \ast g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n, \quad |z| < 1,
\]

where \(f(z) \) is given by (1.1) and \(g(z) = z + \sum_{n=2}^{\infty} b_n z^n \), see [2].

Let \(f \) and \(g \) be analytic in \(E \). The function \(f \) is subordinate to \(g \), written \(f \prec g \) or \(f(z) \prec g(z) \), if \(g \) is univalent in \(E \), \(f(0) = g(0) \) and \(f(E) \subset g(E) \), see [7].
Let incomplete beta function \(\phi(a, c; z) \), see [9] defined by

\[
\phi(a, c; z) = z {}_2F_1(1, a, c; z) = z + \sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(b)_{n-1}} z^n, \quad |z| < 1, \ c \neq 0, -1, -2, \ldots, \quad (1.3)
\]

where \((a)_n\) is Pochhammer symbol defined in terms of the Gamma functions, by

\[
(a)_k = \frac{\Gamma(a + n)}{\Gamma(n)} = \begin{cases} 1, & n = 0, \\ n(n+1)(n+2)\ldots(n+n-1), & n \in N. \end{cases} \quad (1.4)
\]

Further for \(f(z) \in A \), then a linear operator \(L(a, c) : A \to A \), see [1] defined as

\[
L(a, c)f(z) = \phi(a, c; z) * f(z) = z + \sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(b)_{n-1}} z^n, \quad |z| < 1, \quad (1.5)
\]

where \(\phi(a, c; z) \) is given by (1.3). It follows from (1.3) and (1.5) that

\[
z(L(a, c)f(z))' = aL(a+1, c)f(z) - (a-1)L(a, c)f(z). \quad (1.6)
\]

\(L(a, c)f \) is a polynomial for \(a = 0, -1, -2, \ldots \). For \(a \neq 0, -1, -2, \ldots \), root test implies that

\[
\lim_{n \to \infty} \left| \frac{(a)_n}{(c)_n} \right|^\frac{1}{n} = 1.
\]

This shows that infinite series for \(L(a, c)f \) and \(f \) has same radius of convergence. There is \(1-1 \) mapping of \(A \) onto itself with \(L(a, a) \) as identity and \(L(c, a) \) is the continuous inverse of \(L(a, c) \) \((a \neq 0, -1, -2, \ldots) \). Furthermore, if \(h(z) = zf'(z) \), then \(f(z) = L(1, 2)h(z) \) and \(h(z) = L(2, 1)f(z) \). Carlson-Shaffer operator generalizes other linear operators.

In 1999, Kanas and Wiśniowska [3] introduced the conic domain \(\Omega_k, \ k \geq 0 \) and studied it comprehensively, defined as

\[
\Omega_k = \left\{ u + iv : u > k \sqrt{(u - 1)^2 + v^2} \right\}. \quad (1.7)
\]

Extremal functions for the conic regions \(\Omega_k \) are given as

\[
p_k(z) = \begin{cases} \frac{1+z}{1-z}, & k = 0, \\ 1 + \frac{2}{\pi} \left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}} \right), & k = 1, \\ 1 + \frac{2}{\pi} \sinh^2 \left(\frac{1}{2} \arcsin k \right) \arctan h\sqrt{z}, & 0 < k < 1, \\ 1 + \frac{1}{k^2-1} \sin \left(\frac{\pi}{2bR(t)} \right) \frac{u(x)}{\sqrt{1-x^2}} \frac{1}{\sqrt{1-(tx)^2}} dx \right) + \frac{1}{k^2-1}, & k > 1, \end{cases} \quad (1.8)
\]
where, \(u(z) = \frac{z - \sqrt{t}}{1 - \sqrt{t}z}, \ t \in (0,1), |z| < 1 \) and \(z \) can be chosen such that \(k = \cosh \left(\frac{\pi R(t)}{4R(t)} \right) \), \(R(t) \) is Legendre’s complete elliptic integral of \(R(t) \), see [3], [4].

If \(p_k(z) = 1 + \delta_k z + \), then from (1.8) one can have

\[
\delta_k = \begin{cases}
\frac{8(\arccos k)^2}{\pi^4(1-k^2)}, & 0 \leq k < 1 \\
\frac{8}{\pi^2}, & k = 1 \\
\frac{\pi^2}{4(k^2-1)\sqrt{t(1+t)k^2(t)}}, & k > 1
\end{cases}
\] (1.9)

Later, Kanas and Wisniowska [3] defined the class of functions which maps open unit disk \(|z| < 1\) into these conic regions and denoted this class by \(P(p_k) \) as,

\[p \] satisfies the condition \(p(0) = 1 \) belongs to the class \(P(p_k) \), if \(p(z) \prec p_k(z) \), \(|z| < 1\). That is, \(p(E) \subset p_k(E) = \Omega_k \). \(p(z) \in P(p_k) \) holds following property that \(\Re (p(z)) > \frac{k}{k+1}. \)

Now we define the following classes.

Definition 1.1 If a function \(f \) is analytic in \(|z| < 1\) and defined by (1.1), then \(f \in k - UCV(a,c) \) if and only if

\[L(a,c)f \in k - UCV \quad (c \neq 0, -1, -2, ...). \] (1.10)

Special Cases
1. \(0 - UCV(1,1) \equiv C \), see [17].
2. \(k - UCV(1,1) \equiv k - UCV \), we refer [3].

Definition 1.2 If \(f \) is analytic in \(|z| < 1\) and defined by (1.1), then \(f \in k - UT(a,c) \) if and only if

\[L(a,c)f \in k - ST \quad (c \neq 0, -1, -2, ...). \] (1.11)

Special Cases
1. \(0 - UT(a,c) \equiv T(a,c) \) introduced and studied in [18],
2. \(0 - UT(1,1) \equiv S^* \), see [12].
3. \(k - UT(2,1) \equiv k - UCV \), we refer [3].
4. \(k - UT(1,1) \equiv k - ST \) introduced and studied in [3].
5. \(0 - UT(2,1) \equiv C \), see [17].

The relationship between the classes of is \(k - UCV(a,c) \) and \(k - UT(a,c) \) is given as

\[f \in k - UCV(a,c) \ if \ and \ only \ if \ z f' \in k - UT(a,c). \] (1.11)
Definition 1.3 If f is analytic in $|z| < 1$ and defined by (1.1), then $f \in k - UK(a,c)$ if and only if
\[L(a,c)f \in k - UK \quad (c \neq 0, -1, -2,...). \] (1.12)

Special Cases

(i) $0 - UK(1,1) \equiv K$,
(ii) $k - UK(1,1) \equiv k - UK$, see [14].
(iii) $0 - UK(2,1) \equiv C^*$, we refer [15].
(iv) $k - UK(1,1) \equiv k - UC^*$, introduced in [14].
(v) We take $g(z) = f(z)$ in (1.12), we obtain the class $k - UCV(a,c)$.

Definition 1.4 If f is an analytic function in $|z| < 1$ and defined by (1.1), then $f \in k - UC^*(a,c)$ if and only if
\[L(a,c)f \in C^* \quad (c \neq 0, -1, -2,...). \] (1.13)

Special Cases

(i) $0 - UC^*(1,1) \equiv C^*$, see [15].
(ii) $k - UC^*(1,1) \equiv k - UC^*$, we refer [14].
(iii) We take $g(z) = f(z)$ in (1.13), we obtain the class $k - UCV(a,c)$.

The relationship between the classes of is $k - UC^*(a,c)$ and $k - UK(a,c)$ is given as
\[f \in k - UC^*(a,c) \quad if \ and \ only \ if \quad zf' \in k - UK(a,c). \] (1.14)

2. PRELIMINARY CONCEPTS

To prove our results, we need the following lemmas.

Lemma 2.1 [5] Let $f(z) = z + a_2z^2 + a_3z^3 + ... \in k - ST$. Then
\[|a_2| \leq |\delta_k|. \]

This coefficient bound is also holds for the classes of $k - UCV$, $k - UK$ and $k - UC^*$.

Lemma 2.2 [11] If a, b and c are real and satisfy
\[-1 \leq a \leq 1, b \geq 0 \quad and \quad c > 1 + \max\{2 + |a + b - 2|, 1 - (a - 1)(b - 1)\}, \]
then
\[zF(a, b; c; z) \in S^*, \quad (2.1) \]

where

\[
F(a, b; c; z) = 1 + \sum_{n=1}^{\infty} \frac{(a)_n(b)_n}{(c)_n} \frac{z^n}{n!}
\]
is the Guassian hypergeometric function.

Lemma 2.3 [18] If \(a \) and \(c \) are real and satisfy

\[-1 \leq a \leq 1 \quad \text{and} \quad c > 3 + |a|,\]

then \(\phi(a, c; z) \) defined by (1.3) is convex in \(E \).

Lemma 2.4 [16] The class \(S^* \) and \(K \) are closed under convex convolution.

Lemma 2.5 [5] Let \(0 \leq k < \infty \) and \(\beta, \delta \) be any complex numbers with \(\beta \neq 0 \) and \(\Re(\frac{\beta k}{k+1} + \delta) > \delta \) where \(\gamma \) is defined as:

If \(h(z) \) is analytic in \(E \), \(h(0) = 1 \) and it satisfies

\[
h(z) + \frac{zh'(z)}{\beta h(z) + \delta} < p_{k,\gamma}, \quad (2.2)
\]

and \(q_{k,\gamma} \) is an analytic solution of

\[
q_{k,\gamma}(z) + \frac{zq'_{k,\gamma}(z)}{\beta q_{k,r}(z) + \delta} = p_{k,r}(z), \quad (2.3)
\]

then \(q_{k,\gamma}(z) \) is univalent, \(h(z) \prec q_{k,\gamma}(z) \prec p_{k,\gamma}(z) \), and \(q_{k,\gamma}(z) \) is best dominant of (2.2).

Lemma 2.6 [17] If \(f(z) \in C \) and \(g \in S^* \), then for any analytic function in \(E \) with \(F(0) = 1 \).

\[
\frac{f \ast Fg}{f \ast g}(E) \subset C_0 F(E), \quad f \in C, \ g \in S^*, \quad (2.4)
\]

where \(C_0 F(E) \) denotes the closed convex hull of \(F(E) \) (the smallest convex set which contain \(F(E) \)).

Lemma 2.7 [10] Let \(P \) be a complex function in \(E \), with \(\Re(P(z)) > 0 \) for \(z \in E \) and \(h \) be a convex function in \(E \). If \(p(z) \) be a analytic function in \(E \), with \(p(0) = h(0) \) then,

\[
p(z) + P(z)zp'(z) < h(z). \quad (2.5)
\]
3. Main Results

Theorem 3.1 For \(a \geq 1 \)

\[
k - UT(a + 1, c) \subset k - UT(a, c).
\]

Proof. Let \(f(z) \in k - UT(a + 1, c) \).

Let

\[
\frac{z(L(a, c)f(z))'}{L(a, c)f(z)} = p(z).
\]

(3.1)

Then \(p(z) \) is analytic with \(p(0) = 1 \).

From (2.6) and (3.1), we have

\[
aL(a + 1, c)f(z) - (a - 1)L(a, c)f(z) = p(z)L(a, c)f(z),
\]

or

\[
aL(a + 1, c)f(z) = L(a, c)f(z)[(a - 1) + p(z)].
\]

Differentiating logarithmically, we get

\[
\frac{a(L(a + 1, c)f(z))'}{L(a + 1, c)f(z)} = \frac{z(L(a, c)f(z))'}{L(a, c)f(z)} + \frac{zp'(z)}{p(z) + (a - 1)}
\]

(1)

\[
= p(z) + \frac{zp'(z)}{p(z) + (a - 1)}.
\]

Since \(f \in k - UT(a + 1, c) \), it follows that

\[
\left\{ p(z) + \frac{p'(z)}{p(z) + (a - 1)} \right\} < pk(z),
\]

and by using Lemma, \(p(z) < pk(z) \). This proves that \(f(z) \in k - UT(a, c) \) in \(E \).

As special case we note that for \(k = 0 \) in Theorem 3.1, we obtain the known result given in [18].

Theorem 3.2 Let \(f(z) \in k - UT(a, c) \) and

\[
F(z) = \frac{\gamma + 1}{z^\gamma} \int_0^z t^{\gamma - 1} f(t)dt \quad (\gamma \geq 0).
\]

(3.3)

Then \(F(z) \in k - UT(a, c) \).

Proof. From (3.3), we note that \(F(z) \in A \) and

\[
r(L(a, c)F(z)) + z(L(a, c)F(z))' = (\gamma + 1)L(a, c)f(z).
\]

(3.4)
K. I. Noor and S. Riaz – Applications of Carlson Shaffer Operator . . .

Let
\[h(z) = \frac{z(L(a, c)F(z))'}{L(a, c)F(z)}. \]

(3.5)

We note that \(h(z) \) is analytic in \(E \) write \(h(0) = 1 \).

Then, from (3.4), we have
\[r + h(z) = \frac{(r + 1) L(a, c)f(z)}{L(a, c)F(z)}. \]

Differentiating Logarithimacally, we get
\[h(z) \prec p_k(z) \text{ in } E, \]

and this proves that \(F(z) \in k - UT(a, c) \text{ in } E. \)

Theorem 3.3 For \(a \geq 1, \)
\[k - UK(a + 1, c) \subset k - UK(a, c). \]

Proof. Let \(f(z) \in k - UK(a + 1, c). \) Then there exists \(g(z) \in k - UT(a + 1, c) \) such that
\[z(L(a + 1, c)f(z))' = p(z). \]

(3.6)

Using (1.6), we have
\[aL(a + 1, c)f(z) - (a - 1)L(a, c)f(z) = p(z)(L(a, c)g(z)), \]

and differentiating we get
\[a(L(a + 1, c)f(z))' = p'(z)(L(a, c)g(z)) + (a - 1)(L(a, c)f(z))' + p(z)(L(a, c)g(z))' \]
\[= p'(z)(L(a, c)g(z)) + (a - 1)(L(a, c)f(z))' \]
\[+ p(z)[aL(a + 1, c)g(z) - (a - 1)L(a, c)g(z)]. \]

(2)

Using (1.6), we can write
\[\frac{z(L(a + 1, c)f(z))'}{L(a + 1, c)g(z)} = \frac{L(a, c)g(z)}{aL(a + 1, c)g(z)} \]
\[+ p(z) \left\{ \frac{aL(a, c)g(z)}{L(a + 1, c)g(z)} + (a - 1) \left(\frac{L(a, c)f(z)}{L(a, c)g(z)} - \frac{L(a, c)g(z)}{L(a + 1, c)g(z)} \right) \right\} \]
\[+ p(z) \left\{ 1 - (a - 1) \frac{(L(a, c)g(z))'}{L(a, c)g(z)} - \frac{L(a, c)g(z)}{L(a + 1, c)g(z)} \right\}. \]

(3)
Since $g(z) \in k - UT(a + 1, c)$ and $k - UT(a + 1, c) \subset k - UT(a, c)$, it follows that

$$\frac{z(L(a, c)g(z))'}{L(a, c)g(z)} = p_0(z) < p_k(z).$$

From (??), (??), we get

$$\frac{z(L(a + 1, c)f(z))'}{L(a + 1, c)f(z)} = p(z) + \frac{zp'(z)}{p_0(z) + (a - 1)}.$$ (3.7)

Now $p_0(z) \in P(p_k) \subset P\left(\frac{k}{k+1}\right) \subset P$ and $a \geq 1$, so $\Re(p_0(z) + (a - 1)) > 0$. Let $h_0(z) = \frac{1}{p_0(z) + (a - 1)}$. Then $\Re h_0(z) > 0$ in E.

Thus, from (3.9) and $f(z) \in k - UK(a + 1, c)$, we obtain

$$[p(z) + h_0(z)(zp'(z))] \prec p_k(z).$$

Using Lemma 2.7, it gives us that

$$p(z) \prec p_k(z),$$

which proves that $f(z) \in k - UK(a, c)$ in E. This completes the proof.

Theorem 3.4 For $F(z)$ be defined by (3.3) and $f(z) \in k - UK(a, c)$, $z \in E$. Then

$$F(z) \in k - UK(a, c).$$

Proof. Since $f(z) \in k - UK(a, c)$, there exists $g(z) \in k - UT(a, c)$ such that

$$\frac{z(L(a, c)f(z))'}{L(a, c)g(z)} < p_k(z), z \in E.$$

Let

$$G(z) = \frac{\gamma + 1}{z\gamma} \int_0^z t^{\gamma-1} g(t)dt \quad (\gamma \geq 0).$$ (3.10)

Then, by Theorem 3.2 leads us that $G(z) \in k - UT(a, c)$ in E.

Let

$$H(z) = \frac{z(L(a, c)F(z))'}{L(a, c)G(z)}.$$ (3.11)

Then $H(z)$ is analytic in E with $H(0) = 1$.

From (3.10) and (3.11), we have

$$H'(z)(L(a, c)G(z)) + H(z)(L(a, c)G(z))' = -\gamma(L(a, c)F(z))' + (\gamma + 1)(L(a, c)f(z))'.$$
This gives us
\[
zH'(z) + H(z)\frac{z(L(a, c)G(z))'}{L(a, c)G(z)} = -\gamma \frac{z(L(a, c)F(z))'}{L(a, c)G(z)} + (\gamma + 1)\frac{z(L(a, c)f(z))'}{L(a, c)g(z)}.
\] (3.12)

Let \(\frac{(L(a, c)G(z))'}{L(a, c)G(z)} = p_0(z), p_0(z) \in P(p_k) \subset P \) and so \(\Re(p_0(z) + \gamma) \in P \) in \(E \). It follows that
\[
\left\{ H(z) + \frac{zH'(z)}{p_0(z) + \gamma} \right\} < p_k(z).
\]
From this we have
\[
H(z) + h_1(z)(zH'(z)) < p_k(z),
\]
where \(h_1(z) = \frac{1}{p_0(z) + \gamma} \in P \).

We now apply Lemma 2.7, and this gives us \(H(z) < p_k(z) \), which proves that \(F(z) \in k - UK(a, c) \) in \(E \).

Theorem 3.5 Let \(f \in k - UT(a, c) \) and \(\phi \in C \), then \(\phi * f \in k - UT(a, c) \).

Proof. Let
\[
z \frac{[L(a, c)(f * \phi)(z)']}{L(a, c)(f * \phi)(z)} = z(L(a, c)f(z))' * \phi(z)
\]
\[
= \frac{\phi(z) * z(L(a, c)f(z))'}{\phi(z) * L(a, c)f(z)}
\]
\[
= \frac{\phi(z) * h(z)(L(a, c)f(z))}{\phi(z) * L(a, c)f(z)}.
\]

Now \(\phi \in C \), \(L(a, c)f(z) \in k - UT \subset S^* \), \(h(z) \in P(p_k) \), so using Lemma 2.6 we have
\[
z(L(a, c)(f * \phi)') \in P(p_k),
\]
and therefore \(\phi * f \in k - UT(a, c) \).

Special Cases

(i) We take \(k = 0 \), it follows that \(S(a, c) \) is invariant under convex convolution.

(ii) For \(a = 1, \ c = 1 \) and \(k = 0 \), we get the well known result that the class \(S^* \) is closed under convolution with convex function. For this we refer [17].

Following the similar techniques, we can easily prove the following.

Theorem 3.6 Let \(\phi \in C \) and let \(f \in k - UK(a, c) \). Then \(\phi * f \in k - UK(a, c) \).

(We include the proof for the sake of completeness).

Proof. Since \(f \in k - UK(a, c) \), \(\frac{z(L(a, c)f(z))'}{L(a, c)g(z)} \in P(p_k), g \in k - UT(a, c) \).
\[
\frac{z [L(a,c)(f \ast \phi)(z)]'}{L(a,c)(g \ast \phi)(z)} = \frac{\phi(z) \ast \frac{z[L(a,c)f(z)]'}{L(a,c)g(z)}L(a,c)g(z)}{\phi(z) \ast L(a,c)g(z)} = \frac{\phi(z) \ast h(z)(L(a,c)g(z))}{\phi(z) \ast L(a,c)g(z)};
\]

where \(\phi \in C, \ h \in P(p_k), \ L(a,c)g \in S^*. \) Now on using Lemma 2.6, we obtain the required result that \((f \ast \phi) \in k - UK(a,c)\) in \(E.\)

As special cases we note that when \(a = 1, \ c = 1\) and \(k = 0\) in Theorem 3.6, it follows that the class \(K\) is closed under convolution with convex function, see [17].

Applications of Theorem 3.5 and Theorem 3.6

From Theorem 3.5 and Theorem 3.6, it follows that the classes \(k - UT(a,c)\) and \(k - UK(a,c)\) are invariant under convolution with convex function. Using this fact, it can be easily verified that these classes are closed under the integral operators given as:

(i) \(f_1(t) = \int_{0}^{t} \frac{z}{t} f(t) dt.\)

(ii) \(f_2(t) = 2 \int_{0}^{t} \frac{z}{2} f(t) dt.\)

(iii) \(f_3(t) = \frac{c+1}{z} \int_{0}^{t} t^{c-1} f(t) dt.\)

As applications of Theorem 3.5 and Theorem 3.6 we have following results.

Theorem 3.7 Let \(a\) and \(c\) be real and satisfy

\[c \neq 0, \ -1 < c \leq 1, \text{ and } a > 3 + |c|. \tag{3.13}\]

Then

\[k - UT(a,c) \subset k - ST.\]

Proof. If \(f(z) \in k - UT(a,c)\). That is \(L(a,c)f(z) = \phi(a,c) \ast f(z) \in k - ST.\) Since \(a\) and \(c\) satisfy the condition (3.13), we have from that \(\phi(c,a) \in C.\) Therefore, an application of Theorem 3.5 leads to

\[f = \phi(c,z) \ast \phi(a,c)f \in k - ST.\]

As special case we take \(k = 0\), then we obtain the known result given in [18].
Using Theorem 3.6 and similar techniques we have the following.

Theorem 3.8 Let \(a \) and \(c \) be real and satisfy (3.13). Then

\[
k - UK(a, c) \subset k - UK.
\]

Theorem 3.9 Let \(a, c \) and \(d \) be real. If

\[
d \neq 0, -1 < d \leq 1 \text{ and } c > 3 + |d|,
\]

then

(i) \(k - UT(a, d) \subset k - UT(a, c) \),

(ii) \(k - UK(a, d) \subset k - UK(a, c) \).

Proof. Let

\[
f(z) \in k - UT(a, d).
\]

Then

\[
L(a, d)f(z) = \phi(a, d) * f(z) \in k - ST.
\]

Using Lemma 2.3, \(\phi(d, c) \in C \). Hence,

\[
L(a, c)f(z) = \phi(a, c) * f(z) = \phi(a, d) * \phi(d, c) * f(z) = \phi(d, c) * \phi(a, d) * f(z).
\]

Since \(\phi(a, d) * f(z) = L(a, d)f(z) \in k - ST \) and \(\phi(d, c) \in C \), it follows \(L(a, c)f(z) \in k - ST \) and consequently \(f(z) \in k - UT(a, c) \). This completes the proof.

Proof of (ii) is similar and therefore omit it.

As special case we take \(k = 0 \) in Theorem 3.9, this implies the following.

(i) \(S(a, d) \subset S(a, c) \) which has been proved in [18].

(ii) \(K(a, d) \subset K(a, c) \).

Theorem 3.10 Let \(f \in k - UT(a, c) \) and \(f(z) \) be given by (1.1). Then

\[
|a_2| \leq \left| \frac{c}{a} \right| \delta_k,
\]

Proof. Since we have \(L(a, c)f(z) = z + \sum_{n=1}^{\infty} \frac{(a)_n}{(c)_n} a_{n+1} z^{n+1} \) belongs to \(k - ST \), this implies that

\[
\left| \frac{aa_2}{c} \right| \leq \delta_k,
\]

185
which gives the required result.

Special Cases

(i) We take $k = 0$, we have $\delta_k = 2$. This implies that $|a_2| \leq 2|\frac{c}{a}|$.

(ii) For $k = 1$, we have $\delta_k = \frac{8}{\pi^2}$, from which follows that $|a_2| \leq |\frac{c}{a}|\frac{8}{\pi^2}$.

(iii) We take $a = 2$ and $c = 1$, it follows that $L(2, 1)f = zf'$. Therefore, we have $L(2, 1)f \in k-ST$ implies that $|a_2| \leq \frac{\delta_k}{4}$.

Let a and c satisfy condition (3.13). Then by Theorem 3.7, $f \in k-UT(a, c)$ is starlike and hence univalent. Using this observation, we prove the following covering result.

Theorem 3.11 Let a and c satisfy (3.13) and let $f \in k-UT(a, c)$. Then $f(E)$ contains the disk

$$|w| < \frac{a}{2a + |c|\delta_k}.$$ \hspace{1cm} (3.15)

Proof. Since $f \in k-UT(a, c)$ with a and c defined by (3.13) is univalent,

$$g(z) = \frac{w_0f(z)}{w_0 - f(z)} = z + \left(a_2 + \frac{1}{w_0} \right) z^2 + \left(a_3 + \frac{1}{w_{02}} \right) z^3 + \ldots$$

is also univalent, where $w_0 (w_0 \neq 0)$ is complex number such that $f(z) \neq w_0$ for $z \in E$. Hence

$$\left| \frac{1}{|w_0|} - |a_2| \right| \leq \left| a_2 + \frac{1}{w_0} \right| \leq 2.$$

Now, using Theorem 3.10, we have $|a_2| \leq \frac{|c|\delta_k}{a}$, where δ_k is given by (1.9). This gives us

$$\frac{1}{|w_0|} \leq 2 + \frac{c}{a} \delta_k = \frac{2a + |c|\delta_k}{a},$$

which implies that

$$|w_0| \geq \frac{2a + |c|\delta_k}{a}.$$

This completes the proof of theorem.

Special Cases

(i) We take $k = 0$, we have $\delta_k = 2$. It follows that, $f(E)$ contains the disk $|w| \leq \frac{a}{2(a + |c|)}$, which has been proved in [18].

(ii) For $k = 1$, we have $\delta_k = \frac{8}{\pi^2}$. That is $f \in 1-UT(a, c)$ implies that $f(E)$ contains the disk $|w| \leq \frac{a\pi^2}{2(\pi^2+4)}$.

186
(iii) We take \(a = 2 \) and \(c = 1 \), it follows that \(L(2, 1) f = z f' \). Therefore, we have \(L(2, 1) f \in k - ST \) implies that \(f(E) \) contains the disk \(|w| < \frac{4}{8 + \delta_k} \).

Theorem 3.12 Let \(f \in k - UT(a, c) \) and for \(\alpha \geq 0 \), let
\[
F_{\alpha}(z) = (1 - \alpha) f(z) + \alpha z f'(z).
\]

Then \(F_{\alpha}(z) \in k - UT(a, c) \) for \(|z| < r_{\alpha} \), where
\[
r_{\alpha} = \frac{1}{2\alpha + \sqrt{4\alpha^2 - 2\alpha + 1}}. \tag{3.16}
\]

Proof. When \(\alpha = 0 \), the proof is immediate. So we take \(\alpha > 0 \). In Theorem 3.5, we have proved that the class \(k - UT(a, c) \) is preserved under convex convolution. We define
\[
\phi_{\alpha}(z) = (1 - \alpha) \frac{z}{1 - z} + \alpha \frac{z}{(1 - z)^2} = z + \sum_{n=2}^{\infty} (1 + (n - 1)\alpha) z^n. \tag{4}
\]

It is known [10] and can easily be verified that \(\phi_{\alpha}(z) \in C \) for \(|z| < r_{\alpha} \), where \(r_{\alpha} \) is given by (3.16).

We can write
\[
F_{\alpha}(z) = (1 - \alpha) f(z) + \alpha z f'(z) = \phi_{\alpha}(z) * f(z).
\]

Since \(f \in k - UT(a, c) \), \(\phi_{\alpha} \in C \) in \(|z| < r_{\alpha} \), therefore, by Theorem 3.5, it follows that \(F_{\alpha} \in k - UT(a, c) \) in \(|z| < r_{\alpha} = \frac{1}{2\alpha + \sqrt{4\alpha^2 - 2\alpha + 1}} \).

Special Cases

(i) Let \(\alpha = \frac{1}{2} \) in Theorem 4.2.8. Then we have \(F_{\alpha}(z) = \frac{(zf(z))'}{2} \). This is Livingston’s operator, see [8]. In this case, \(r_{\frac{1}{2}} = \frac{1}{2} \).

(ii) For \(\alpha = 1 \) in Theorem 4.2.6. It follows that \(F_{\alpha}(z) = zf'(z) \) and \(f \in k - UT(a, c) \). In this case \(F_{\alpha}(z) \in k - UT(a, c) \) for \(|z| < r_1 = \frac{1}{2 + \sqrt{3}} \).

Acknowledgements. The author would like to express their sincere gratitude to Dr. M. Junaid Zaidi, Rector, COMSATS Institute of Information Technology, Pakistan, for providing excellent research facilities.
References

Khalida Inayat Noor
Department of Mathematics, COMSATS Institute of Information Technology,
Islamabad, Pakistan
email: khalidanoor@gmail.com

Sadia Riaz
Department of Mathematics, COMSATS Institute of Information Technology,
Islamabad, Pakistan
email: sadia_riaz2007@yahoo.com