NON-ARCHIMEDEAN STABILITY OF GENERALIZED JENSEN'S AND QUADRATIC EQUATIONS

A. Charifi, S. Kabbaj and D. Zeglami

Abstract. We use the operatorial approach to provide a proof of the Hyers-Ulam stability for the equations

\[\sum_{\lambda \in \Phi} f(x + \lambda y + a_{\lambda}) = Nf(x), \quad x, y \in E, \]
\[\sum_{\lambda \in \Phi} f(x + \lambda y + a_{\lambda}) = Nf(x) + Nf(y), \quad x, y \in E, \]

where \(E \) is a normed space, \(F \) is a non-Archimedean Banach space, \(\Phi \) is a finite group of automorphisms of \(E \), \(N = |\Phi| \) designates the number of its elements, and \(\{a_{\lambda}, \lambda \in \Phi\} \) are arbitrary elements of \(E \). These equations provides a common generalization of many functional equations such as Cauchy's, \(\Phi \)-Jensens's, \(\Phi \)-quadratic, Lukasik's equation. Some applications of our results will be illustrated.

2010 Mathematics Subject Classification: Primary 39B72; Secondary 39B82; 39B52.

Keywords: Generalized polynomial function, Jensen's equation, quadratic functional equation, ultrametric space, Hyers–Ulam–Rassias stability.

1. Introduction

In [50], Ulam posed the question of the stability of Cauchy's equation: If a function \(f \) approximately satisfies Cauchy's functional equation \(f(x + y) = f(x) + f(y) \) when does it has an exact solution which \(f \) approximates. The problem has been considered for various equations, also for mappings with many different types of domains and ranges by a number of authors including Hyers [22, 23], Aoki [2], T. M. Rassias [41], J.M. Rassias [39, 40], Gajda [19] Gavrutà [20] and others. For definitions,
approaches, and results on Hyers-Ulam-Rassias stability we refer the reader to, e.g., ([18],[24],[29],[31],[43],[44],[51]-[53]).

The functional equation
\[f(x + y) + f(x - y) = 2f(x) + 2f(y), \]

is called a quadratic functional equation. The first stability theorem for the Eq. (1) was proved by Skof [46] for mappings \(f \) from a normed space \(X \) into a Banach space \(Y \). Cholewa [12] extended Skof’s theorem by replacing \(X \) by an abelian group \(G \). Skof’s result was later generalized by Czerwik [14] in the spirit of Hyers-Ulam-Rassias. Since then, a number of stability results have been obtained for quadratic functional equations and Jensen’s functional equation ([1],[4],[6]-[10],[26]-[28],[33],[38]). Informations and applications about the Eq. (1) and its further generalizations can be found e.g. in ([13],[14],[17],[32],[42],[45],[47]-[49]).

The stability problem for the functional equation
\[\frac{1}{|\Phi|} \sum_{\lambda \in \Lambda} f(x + \lambda y) = f(x) + g(y), \quad x, y \in X, \]

where \(X \) is an abelian group, \(\Phi \) is is a finite subgroup of the automorphism group of \(X \) and \(f, g : X \to \mathbb{C} \) was posed and solved by Badora in [4]. Equation (2) is a joint generalization of Cauchy’s functional equation (\(\Phi = \{id\} \), \(g = f \)), Jensen’s equation (\(\Phi = \{id, -id\} \), \(g = 0 \)) and the quadratic equation (\(\Phi = \{id, -id\} \), \(g = f \)). This result was published (with a different proof and \(h = f \)) by Ait Sibaha et al. in [1] and generalized by Charifi et al. in ([6],[7]).

In [10], the authors gave an explicit description of the solutions \(f : S \to H \) each of the following generalized equations
\[\sum_{\lambda \in \Phi} f(x + \lambda y + a\lambda) = Nf(x), \quad x, y \in S, \]
\[\sum_{\lambda \in \Phi} f(x + \lambda y + a\lambda) = Nf(x) + Nf(y), \quad x, y \in S, \]

where \(S \) is an abelian monoid, \(H \) is an abelian group and \(\Phi \) is a finite subgroup of automorphisms of \(S \), and \(f, g : X \to H \), which covers the functional equations
\[f(x + y + a) = f(x) + f(y), \quad x, y \in S, \]
\[\Phi = \{id\} \]
\[f(x + y + a) + f(x + \sigma(y) + b) = 2f(x), \quad x, y \in S, \]
\[\Phi = \{id, \sigma\} \]
\[f(x + y + a) + f(x + \sigma(y) + b) = 2f(x) + 2f(y), \quad x, y \in S, \]
\[\Phi = \{id, \sigma\} \]
where \(a, b\) are fixed elements of \(S\) and \(\sigma\) is an involution of \(S\) i.e. \(\sigma(x + y) = \sigma(y) + \sigma(x)\) and \(\sigma(\sigma(x)) = x\) for all \(x \in S\).

In 1897, Hensel [21] has introduced a normed space which does not have the Archimedean property. Let \(p\) be a fixed prime number and \(x\) be a non-zero rational number, there exists a unique integer \(v_p(x)\in \mathbb{Z}\) such that \(x = p^{v_p(x)} \frac{a}{b}\) where \(a\) and \(b\) are integers co-prime to \(p\). The function defined in \(\mathbb{Q}\) by \(|x|_p = p^{-v_p(x)}, x \in \mathbb{Q}\) is called a \(p\)-adic, a ultrametric or simply a non-Archimedean absolute value on \(\mathbb{Q}\).

By a non-Archimedean field we mean a field \(K\) equipped with a function (valuation) \(|.| : K \rightarrow [0, +\infty)\), called a non-Archimedean absolute value on \(K\) and satisfying the following conditions:

(i) \(|x| = 0 \iff x = 0\), \(x \in K\),

(ii) \(|xy| = |x||y|, x, y \in K\),

(iii) \(|x + y| \leq \max(|x|, |y|), x, y \in \mathbb{K}\).

We assume, throughout this paper that this value absolute is non-trivial i.e., there exists an element \(k\) of \(K\) such that, \(|k| \neq 0, 1\).

Definition 1. By a non-Archimedean vector space, we mean a vector space \(E\) over a non-Archimedean field \(K\) equipped with a function \(|.| : E \rightarrow [0, +\infty)\) called a non-Archimedean norm on \(E\) and satisfying the following properties:

(i) \(\|x\| = 0 \iff x = 0\), \(x \in E\),

(ii) \(\|kx\| = |k|\|x\|, (k, x) \in K \times E\),

(iii) \(\|x + y\| \leq \max(\|x\|, \|y\|), x, y \in E\).

Due to the fact that

\[
\|x_m - x_n\| \leq \max \{\|x_j - x_{j-1}\|, n + 1 \leq j \leq m\}, m > n,
\]

a sequence \((x_n)\) is Cauchy if and only if \((x_{n+1} - x_n)\) converges to zero in a non-Archimedean normed space. By a complete non-Archimedean normed space, we mean one in which every Cauchy sequence is convergent.

The most important examples of non-Archimedean spaces are \(p\)-adic numbers. A key property of \(p\)-adic numbers is that they do not satisfy the Archimedean axiom: for all \(x\) and \(y > 0\), there exists an integer \(n\) such that \(x < ny\).

In [3], Arriola and Beyer initiated the stability of Cauchy’s functional equation over \(p\)-adic fields. Moslehian and T.M. Rassias [37] proved the Hyers Ulam Rassias stability of Cauchy’s functional and the quadratic functional equations in non-Archimedean normed space. For various aspects of the theory of stability in non-Archimedean normed space we can refer to ([8],[9],[16],[36],[37]).

Let \(\mathbb{K}\) be an ultrametric field of characteristic zero, \(E\) be a \(\mathbb{K}\)-vector space and \(F\) be a complete ultrametric \(\mathbb{K}\)-vector space (in particular in the field of \(p\)-adic numbers).
As continuation of some previous works, the purpose of the present paper is to prove the Hyers–Ulam stability of the functional equations (3) and (4) for mappings f from a normed space E into a non-Archimedean Banach space F.

2. Preliminaries

To formulate our results we introduce the following notation and assumptions that will be used throughout the paper:

Let \mathbb{K} be an ultrametric field of characteristic zero (in particular in the field of p-adic numbers), E be a \mathbb{K}-vector space, F be a complete ultrametric \mathbb{K}-vector space and let F^E denotes the vector space consisting of all maps from E into F. We let Φ denotes a finite group of automorphisms of E, N designates the number of its elements and $\{a_\lambda, \lambda \in \Phi\}$ are arbitrary elements of E.

We now recall the definition and some necessary notions of multi-additive mappings, using the sequel.

A function $A : E \rightarrow F$ is additive if $A(x + y) = A(x) + A(y)$ for all $x, y \in E$.

Let $k \in \mathbb{N}$, be a function $A_k : E^k \rightarrow F$ is k-additive if it is additive in each variable, in addition we say that A_k is symmetric if it satisfies $A_k(x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(k)}) = A_k(x_1, x_2, ..., x_k)$ for all $(x_1, x_2, ..., x_k) \in E^k$ and all permutations π of k elements.

Some informations concerning on such mappings can be found for instance in [31].

Let $A_k : E^k \rightarrow F$ be a k-additive and symmetric function and let $A_k^* : E \rightarrow F$ defined by $A_k^*(x) = A_k(x, x, ..., x)$ for all $x \in E$. Such a function A_k^* will be called a monomial function of degree k (if $A_k^* \neq 0$). We note that it is easily seen that $A_k^*(rx) = r^k A_k^*(x)$ for all $x \in E$ and all $r \in \mathbb{Q}$.

A function $P : E \rightarrow F$ is called a GP function (generalized polynomial function) of degree $m \in \mathbb{N}$ iff there exist $A_0 \in E$ and symmetric k-additive functions $A_k : E^k \rightarrow F$ (for $1 \leq k \leq m$) such that

$$A_k^* \neq 0 \text{ and } P(x) = A_0 + \sum_{k=1}^{m} A_k^*(x) \text{ for all } x \in E.$$

For $h \in E$ we define the linear difference operator Δ_h on F^E by

$$\Delta_h(f)(x) = f(x + h) - f(x),$$

for all $f \in F^E$ and $x \in E$. Notice that these difference operators commute ($\Delta_h \Delta_{h'} = \Delta_{h'} \Delta_h$ for all $h, h' \in E$) and if $h \in E$, $n \in \mathbb{N}$ then Δ_h^n the n-th iterate of Δ_h satisfies

$$\Delta_h^n(f)(x) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(x + kh), \text{ for all } x, h \in E \text{ and } f \in F^E.$$
Now we note some results for later use.

Theorem 1. [5] Let $n \in \mathbb{N}$, $f \in F^E$ and $\delta \in \mathbb{R}^+$. Then the following statements are equivalent.

i) $\|\Delta_n^h f(x)\| \leq \delta$ for all $x, h \in E$.

ii) There is, up to a constant, a unique GP function P of degree at most $n - 1$ such that $\|f(x) - f(0) - P(x)\| \leq \delta$ for all $x \in E$.

Theorem 2. [9] Let $(S, +)$ be an abelian monoid, Φ be a finite subgroup of the group of automorphisms of S, $N = \text{card}(\Phi)$, $(H, +)$ be an abelian group uniquely divisible by $(N + 1)!$ and $a_\lambda \in S$ ($\lambda \in \Phi$). Then the function $f : S \to G$ is a solution of equation

$$\sum_{\lambda \in \Phi} f(x + \lambda y + a_\lambda) = \kappa f(x) + \sum_{\lambda \in \Phi} f(\lambda y), \ x, y \in S, \quad (8)$$

if and only if f has the following form

$$f(x) = A_0 + \sum_{i=1}^{N} A_i^*(x), \ x \in S, \quad (9)$$

where $A_0 \in G$ and $A_k : S^k \to G$, $k \in \{1, 2, ..., N\}$ are symmetric and k-additive functions satisfying the two conditions:

i) $\sum_{i=\max \{j\} \choose k}^{N \choose j} \sum_{\lambda \in \Phi} A_i(x, x, ..., x, a_\lambda, ..., a_\lambda, \lambda y, \lambda y, ..., \lambda y) = 0, \ x, y \in S, \quad 0 \leq k \leq N - 1, \ 0 \leq j \leq N - k, \ 2 \leq \max\{j + 1, k + 1, k + j\}$

and

ii) $\sum_{\lambda \in \Phi} \sum_{i=1}^{N} A_i^*(a_\lambda) = N A_0$.

Theorem 3. [8] Let Φ be a finite subgroup of the group of automorphisms of E, $N = \text{card}(\Phi)$, $\{a_\lambda, \lambda \in \Phi\}$ are arbitrary elements of E and $f : E \to F$ satisfying the inequality

$$\left\| \sum_{\lambda \in \Phi} f(x + \lambda y + a_\lambda) - N f(x) - \sum_{\lambda \in \Phi} f(\lambda y) \right\| \leq \delta,$$

for all $x, y \in E$. Then there exists a unique GP function $P : E \to F$ of degree at most N solution of the equation

$$\sum_{\lambda \in \Phi} f(x + \lambda y + a_\lambda) = N f(x) + \sum_{\lambda \in \Phi} f(\lambda y), \ x, y \in E, \quad (10)$$

such that

$$\|f(x) - P(x)\| \leq \frac{\delta}{|N|} \text{ for all } x \in E.$$
Lemma 4. [8] Let Φ be a finite automorphism group of E, $N = \text{card}\Phi$, $\delta, \delta' \in \mathbb{R}^+$, $a_\lambda \in E$ ($\lambda \in \Phi$), and $f \in F^E$ such that

$$\left\| \sum_{\lambda \in \Phi} f(x + \lambda y + a_\lambda) - N f(x) - \sum_{\lambda \in \Phi} f(\lambda y) \right\| \leq \delta, \ x, y \in E. \quad (11)$$

Then, there exists a mapping $h \in F^E$ which satisfies

$$\| \Delta^N_y f(x) - h(y) \| \leq \frac{\delta}{|N|}, \ x, y \in E,$$

and

$$\| \Delta^{N+1}_y f(x) \| \leq \frac{\delta'}{|N|}, \ x, y \in E. \quad (12)$$

Furthermore, if $\left\| \sum_{\lambda \in \Phi} (\lambda y) \right\| \leq \delta'$, $y \in E$, then $\| \Delta^N_y f(x) \| \leq \max\left(\frac{\delta}{|N|}, \frac{\delta'}{|N|}\right)$, $x, y \in E$.

In the next two theorems the solutions of the functional equations (3) and (4), respectively, will be expressed in terms of GP functions.

Theorem 5. [10] Let $(S, +)$ be an abelian monoid, Φ be a finite subgroup of the group of automorphisms of S, $N = \text{card}(\Phi)$, $(H, +)$ be an abelian group uniquely divisible by $N!$ and $\{a_\lambda, \lambda \in \Phi\}$ are arbitrary elements of S. Then the function $f : S \to H$ is a solution of the equation (3) if and only if f has the following form

$$f(x) = A_0 + \sum_{i=1}^{N-1} A_i^k(x), \ x \in S, \quad (13)$$

where $A_0 \in H$ and $A_k : S^k \to H$, $k \in \{1, 2, ..., N - 1\}$ are k-additive and symmetric functions which satisfy the following conditions

$$\sum_{i=\max(k+j,k+1)}^{N-1} \binom{i-k}{j} \sum_{\lambda \in \Phi} A_i(x, ..., a_\lambda, ..., a_\lambda, \lambda y, ..., \lambda y) = 0 \text{ for } x, y \in S,$$

$$0 \leq k \leq N - 2, \ 0 \leq j \leq N - k - 1.$$

Theorem 6. [10] Let $(S, +)$ be an abelian semigroup, Φ be a finite subgroup of the group of automorphisms of S, $N = \text{card}(\Phi)$, $(H, +)$ be an abelian group uniquely divisible by $(N + 1)!$ and $\{a_\lambda, \lambda \in \Phi\}$ are arbitrary elements of S. Then the function $f : S \to H$ is a solution of the equation (4) if and only if f has the following form

$$f(x) = A_0 + \sum_{i=1}^{N} A_i^k(x), \ x \in S, \quad (14)$$
where $A_0 \in H$ and $A_k : S^k \to H$, $k \in \{1, 2, ..., N\}$ are symmetric and k-additive functions satisfying the three conditions:

1) $\sum_{\lambda \in \Phi} N \sum_{k=1}^{N} A_k^*(a_{\lambda}) = N A_0$,

2) $\sum_{2 \leq i = \max(k+j,k+1)}^{N} (i \choose j) (i-k)^{\choose j} \sum_{\lambda \in \Phi} A_i(x, ..., a_{\lambda}, ..., a_{\lambda}, \lambda y, ..., \lambda y) = 0$, $x, y \in S$, $1 \leq k \leq N - 1$, $0 \leq j \leq N - k$ and

3) $\sum_{k=1}^{N} (i \choose k) \sum_{\lambda \in \Phi} A_k(\lambda x, ..., \lambda x, a_{\lambda}, ..., a_{\lambda}) = N A_i^*(x)$, $x \in S$, $1 \leq i \leq N$.

3. Main results

The following lemma will be used in the proof of our main results namely Theorems 8 and 11.

Lemma 7. Let K be an ultrametric field of characteristic zero and \overline{K} its completion, F be a complete ultrametric K-vector space, $\delta \in \mathbb{R}^+$ and P be a polynomial function of degree n, $n \geq 1$, with rational variable and with coefficients in F. Suppose that

$$\|P(z)\| \leq \delta \text{ for all } z \in \mathbb{Q}.$$ \hspace{1cm} (15)

Then, there exists a prime number p such that $\mathbb{Q}_p \subset \overline{K}$ and

$$P(z) = P(0) \text{ for all } z \in \mathbb{Q}_p,$$

i.e. all non-constant coefficients of P are zero.

Proof. There exist $a_0, a_1, ..., a_n \in F$ such that

$$P(z) = \sum_{i=0}^{n} a_i z^i, \ z \in \mathbb{Q}.$$

The theorem of Ostrowski shows that there exists a prime number p for which $\mathbb{Q}_p \subset \mathbb{K}$. An extension by continuity of the external law of F from K to \mathbb{K} allows us to write,

$$\|P(z)\| \leq \delta \text{ for } z \in \mathbb{Q}_p.$$

Let $\varphi : F \to \mathbb{Q}_p$ be a continuous \mathbb{Q}_p-linear functional. Taking into account the previous inequality we have for all $z \in \mathbb{Q}_p$:

$$\|\varphi(P(z))\| \leq \delta \|\varphi\| \text{ for } z \in \mathbb{Q}_p,$$

17
which means that
\[\left\| \sum_{i=0}^{n} \varphi(a_i)z^i \right\| \leq \delta \| \varphi \| \text{ for } z \in \mathbb{Q}_p. \]

It results, since a polynomial function is bounded if and only if it is constant, that
\[\varphi(a_i) = 0 \text{ for } 1 \leq i \leq n \text{ i.e. } P(z) = P(0) \text{ for all } z \in \mathbb{Q}_p. \]

In the following theorem, using the operatorial approach we obtain the non-Archimedean stability in the sense of Hyers-Ulam of the generalised Φ-Jensen functional equation.

Theorem 8. Assume that Φ is a finite subgroup of the group of automorphisms of E, $N = \text{card}(\Phi)$, $\{a_\lambda, \lambda \in \Phi\}$ are arbitrary elements of E and $f : E \to F$ satisfying the following inequality:

\[\left\| \sum_{\lambda \in \Phi} f(x + \lambda y + a_\lambda) - Nf(x) \right\| \leq \delta, \quad (16) \]

for all $x, y \in E$. Then there exists, up to a constant, a unique GP function $P : E \to F$ solution of the equation (3), of degree at most $N - 1$, such that

\[\|f(x) - f(0) - P(x)\| \leq \frac{\delta}{|N|^2} \text{ for all } x \in E. \]

Proof. Suppose that f satisfies the inequality (16). Letting $y = 0$ and $x = 0$ in (16), respectively, we get

\[\left\| \sum_{\lambda \in \Phi} f(x + a_\lambda) - Nf(x) \right\| \leq \delta, \quad x \in E, \]

and

\[\left\| \sum_{\lambda \in \Phi} f(\lambda y + a_\lambda) - Nf(0) \right\| \leq \delta, \quad y \in E. \]

By replacing, in the last inequality, y by μy we obtain

\[\left\| N^2f(0) - N \sum_{\nu \in \Phi} f(\nu y) \right\|
\leq \max \left\{ \left\| N^2f(0) - \sum_{\mu \in \Phi} \sum_{\lambda \in \Phi} f(\mu \lambda y + a_\lambda) \right\|, \left\| \sum_{\nu \in \Phi} \sum_{\lambda \in \Phi} f(\nu y + a_\lambda) - N \sum_{\nu \in \Phi} f(\nu y) \right\| \right\}
\leq \delta, \quad (17) \]
for all $y \in E$. It follows, by taking $g := f - f(0)$ and the use of (16) and (17) that

$$\left\| \sum_{\lambda \in \Phi} g(x + \lambda y + a\lambda) - Ng(x) - \sum_{\lambda \in \Phi} g(\lambda y) \right\|$$

$$= \left\| \sum_{\lambda \in \Phi} f(x + \lambda y + a\lambda) - Nf(x) + Nf(0) - \sum_{\lambda \in \Phi} f(\lambda y) \right\|$$

$$\leq \max \left\{ \left\| \sum_{\lambda \in \Phi} f(x + \lambda y + a\lambda) - Nf(x) \right\| , \left\| Nf(0) - \sum_{\lambda \in \Phi} f(\lambda y) \right\| \right\}$$

$$\leq \frac{\delta}{|N|^2},$$

for all $x, y \in E$. In virtue of Theorem 3, there exists, in the class of function $g : E \to F$ with $g(0) = 0$, a GP function P of degree at most N solution of the functional equation

$$\sum_{\lambda \in \Phi} g(x + \lambda y + a\lambda) = Ng(x) + \sum_{\lambda \in \Phi} g(\lambda y) \quad (18)$$

such that

$$\|g(x) - P(x)\| \leq \frac{\delta}{|N|^2} \text{ for all } x \in E. \quad (19)$$

According to Theorem 2, $P(x) = \sum_{i=1}^{N} A^*_i(x)$ with

$$\sum_{\lambda \in \Phi} \sum_{i=1}^{N} A^*_i(a\lambda) = 0 \quad (20)$$

and

$$\sum_{i=\max(k,j)}^{N} \binom{i}{k} \binom{i-k}{j} \sum_{\lambda \in \Phi} \sum_{k} A_i(x,...,x,a\lambda,...,a\lambda,\lambda y,...,\lambda y) = 0 \quad (21)$$

for all $x, y \in E, 0 \leq k \leq N-1, 0 \leq j \leq N-k$ and $2 \leq \max = \max(k+1, j+1, k+j)$. In addition by (17),

$$\left\| \sum_{\lambda \in \Phi} P(\lambda y) \right\| \leq \max \left\{ \left\| \sum_{\lambda \in \Phi} (P(\lambda y) - g(\lambda y)) \right\| , \left\| \sum_{\lambda \in \Phi} g(\lambda y) \right\| \right\}$$

$$\leq \frac{\delta}{|N|^2}$$

for all $y \in E$. In view of Lemma 4, Theorem 1 and Lemma 7, we have

$$A_N = 0 \quad (22)$$
and by Lemma 7,
\[\sum_{\lambda \in \Phi} A_i^\ast(\lambda y) = 0, \quad y \in E, \quad 1 \leq i \leq N - 1. \] (23)

Taking into account of (20) (21), (22) and (23) we get
\[N - 1 \sum_{i=\max(k+j,k+1)} \binom{i}{k} \binom{i-k}{j} \sum_{\lambda \in \Phi} A_i(x,...,x,a_{\lambda},...,a_{\lambda},\lambda y,...,\lambda y) = 0, \quad x,y \in E, \]

\[0 \leq k \leq N - 2, \quad 0 \leq j \leq N - k - 1. \] This shows, using Theorem 5, that \(P \) is a solution of the Eq. (3).

The uniqueness is giving by Lemma 7. In fact, let \(Q \) be another GP function of degree at most \(N - 1 \), solution of Eq. (3) and satisfying the inequality (19) then we get
\[\| P(x) - Q(x) \| \leq \max(\| P(x) - g(x) \|, \| g(x) - Q(x) \|) \]
\[\leq \frac{\delta}{|N|^2}, \quad x \in E. \]

According to Lemma 7 we get \(P - Q \) is constant. This completes the proof.

Corollary 9. Assume that \(a, b \) are arbitrary elements of \(E \) and \(f : E \to F \) satisfying the following inequality:
\[\| f(x + y + a) + f(x + \sigma(y) + b) - 2f(x) \| \leq \delta, \] (24)

for all \(x, y \in E \). Then there exists, up to a constant, a unique GP function \(P : E \to F \) solution of the equation (6), of degree at most 1, such that
\[\| f(x) - f(0) - P(x) \| \leq \frac{\delta}{|4|} \quad \text{for all} \quad x \in E. \]

Proof. The proof follows on putting \(\Phi = \{ I, \sigma \} \) in Theorem 8.

Corollary 10. Let \(p \) be a prime number, \(\mathbb{C}_p = \mathbb{Q}_p + i\mathbb{Q}_p, \) \((i^2 = -1), j \) be a primitive cube root of unity, \(a \) be a nonzero complex number and \(f : \mathbb{C}_p \to \mathbb{C}_p \), be a continuous function satisfying the following inequality
\[\| f(x + y + j a) + f(x + jy + j^2 a) + f(x + j^2 y + a) - 3f(x) \| \leq \delta, \quad x, y \in \mathbb{C}_p, \] (25)

for all \(x, y \in \mathbb{C}_p \). Then there exists, up to a constant, a unique GP function \(P : \mathbb{C}_p \to \mathbb{C}_p \) of degree at most 2, solution of the equation
\[f(x + y + j a) + f(x + jy + j^2 a) + f(x + j^2 y + a) = 3f(x), \quad x, y \in \mathbb{C}_p, \] (26)
such that

$$\|f(x) - P(x)\| \leq \frac{\delta}{|9|}, \ x \in E.$$

Now we investigate the non-Archimedean stability, in the sense of Hyers-Ulam, of the equation (4).

Theorem 11. Assume that Φ is a finite subgroup of the group of automorphisms of E, $N = \text{card}(\Phi)$, $\{a_\lambda, \lambda \in \Phi\}$ are arbitrary elements of E and $f : E \to F$ satisfying the following inequality:

$$\left\| \sum_{\lambda \in \Phi} f(x + \lambda y + a_\lambda) - N f(x) - N f(y) \right\| \leq \delta, \ (27)$$

for all $x, y \in E$. Then there exists a unique GP function $P : E \to F$ solution of the equation (4), of degree at most N, such that

$$\|f(x) - P(x)\| \leq \frac{\delta}{|N|^2} \text{ for } x \in E.$$

Proof. Suppose that f satisfies the inequality (27). Letting $x = y = 0, y = 0$ and $x = 0$, respectively, in (27) we obtain

$$\left\| \sum_{\lambda \in \Phi} f(a_\lambda) - 2N f(0) \right\| \leq \delta,$$

$$\left\| \sum_{\lambda \in \Phi} f(x + a_\lambda) - N f(x) - N f(0) \right\| \leq \delta,$$

$$\left\| \sum_{\lambda \in \Phi} f(\lambda x + a_\lambda) - N f(x) - N f(0) \right\| \leq \delta,$$

for all $x, y \in E$. Taking into account the above inequalities and (27) we get that

$$\left\| N^2 f(x) + N \sum_{\mu \in \Phi} f(\mu y) - N^2 f(0) - N \sum_{\nu \in \Phi} f(x + \nu y) \right\|$$

$$\leq \max \left\{ \left\| N^2 f(x) + N \sum_{\mu \in \Phi} f(\mu y) - \sum_{\lambda \in \Phi} \sum_{\mu \in \Phi} f(x + \lambda \mu y + a_\lambda) \right\|, \right.$$

$$\left\| \sum_{\nu \in \Phi} \sum_{\lambda \in \Phi} f(x + \nu y + a_\lambda) - N^2 f(0) - N \sum_{\nu \in \Phi} f(x + \nu y) \right\| \right\}$$

$$\leq \delta,$$
for all $x, y \in E$. With the notation $g := f - f(0)$ we can reformulate the previous inequality to
\[
\left\| \sum_{\mu \in \Phi} g(x + \mu y) - N g(x) - \sum_{\mu \in \Phi} g(\mu y) \right\| \leq \frac{\delta}{|N|},
\]
for all $x, y \in E$. Theorem 3 shows that there exists a GP function $Q : E \to F$ of degree at most N solution of the equation
\[
\sum_{\mu \in \Phi} g(x + \mu y) = Ng(x) + \sum_{\mu \in \Phi} g(\mu y), \quad x, y \in E
\]
such that
\[
\|g(x) - Q(x)\| \leq \frac{\delta}{|N|^2}, \quad x \in E. \tag{28}
\]
Then there exist k-additive and symmetric functions $A_k : E^k \to F$, $k \in \{1, 2, ..., N\}$ such that $Q(x) = \sum_{i=1}^{N} A_k^i(x)$, $x \in E$ and we have
\[
\sum_{\mu \in \Phi} Q(x + \mu y) = NQ(x) + \sum_{\mu \in \Phi} Q(\mu y), \quad x, y \in E.
\]
Let P be the GP function defined by
\[
P(x) = Q(x) + \frac{1}{N} \sum_{\lambda \in \Phi} \sum_{i=1}^{N} A_k^i(a_\lambda), \quad x \in E,
\]
so we have the following inequality
\[
\|f(x) - P(x)\| = \left\| g(x) - Q(x) - \frac{1}{N} \left(\sum_{\lambda \in \Phi} f(a_\lambda) + 2N f(0) \right) \right\|
\leq \max\left(\frac{\delta}{|N|^2}, \frac{\delta}{|N|} \right)
\leq \frac{\delta}{|N|^2},
\]
for all $x \in E$. To prove that P is a solution of the equation (4) we define the functions $I_P, J_P : E \times E \to F$ by the formulas
\[
I_P(x, y) = \sum_{\nu \in \Phi} P(x + \nu y + a_\nu) - NP(x) - NP(y), \quad x, y \in E
\]
and

\[J_P(x, y) = I_P(x, y) - I_P(0, y), \quad x, y \in E. \]

We have therefore

\[
I_P(0, 0) = \sum_{\nu \in \Phi} P(a_{\nu}) - 2N P(0)
\]

\[
= \left\{ \sum_{\nu \in \Phi} Q(a_{\nu}) + \sum_{\nu \in \Phi} \sum_{i=1}^{N} A_i^\epsilon(a_{\nu}) \right\} - 2 \left\{ \sum_{\nu \in \Phi} \sum_{i=1}^{N} A_i^\epsilon(a_{\nu}) \right\}
\]

\[
= 0.
\]

Furthermore we have,

\[
\|I_P(x, y)\| \leq \max \left\{ \left\| \sum_{\lambda \in \Phi} P(x + \lambda y + a_{\lambda}) - f(x + \lambda y + a_{\lambda}) \right\|, \right.
\]

\[
\left. \|NP(x) - N f(x)\|, \|NP(y) - N f(y)\|, \delta \right\}
\]

\[
\leq \max\left(\frac{\delta}{|N|^2}, \delta \right)
\]

\[
\leq \frac{\delta}{|N|^2},
\]

for all \(x, y \in E \). Replacing \(P \) by its expression (as a GP function) in \(I_P(0, y) \), \(I_P(x, y) \) we get, that for all \(x, y \in E \)

\[
I_P(0, y) = \sum_{\lambda \in \Phi} P(\lambda y + a_{\lambda}) - NP(0) - NP(y)
\]

\[
= \sum_{\lambda \in \Phi} \sum_{i=1}^{N} A_i^\epsilon(\lambda y + a_{\lambda}) - N \sum_{i=1}^{N} A_i^\epsilon(y) - NP(0)
\]

\[
= \sum_{i=1}^{N} \sum_{j=0}^{i} \left(\sum_{\lambda \in \Phi} A_i(\lambda y, \ldots, \lambda y, a_{\lambda}, \ldots, a_{\lambda}) - N A_i^\epsilon(y) - NP(0) \right)
\]

\[
= \sum_{j=1}^{N} \left(\sum_{i=j}^{N} \left(\sum_{\lambda \in \Phi} A_i(\lambda y, \ldots, \lambda y, a_{\lambda}, \ldots, a_{\lambda}) - N A_i^\epsilon(y) \right) \right)
\]

and

\[
J_P(x, y) = \sum_{\lambda \in \Phi} \sum_{k=1}^{N} \sum_{i=max(k+j,k+1)\leq N} \left(\begin{array}{c} i \rule{0cm}{0.8cm} \\
\end{array} \right) \left(\begin{array}{c} i-j \rule{0cm}{0.8cm} \\
\end{array} \right) A_i(x, \ldots, x, a_{\lambda}, \ldots, a_{\lambda}, \lambda y, \ldots, \lambda y).
\]
Making the substitution \(y \) by \(Zy, Z \in \mathbb{Q} \) in \(I_P(0, y) \) we obtain a polynomial function \(R(Z) \) with rational variable and with coefficients in \(F \),

\[
R(Z) = \sum_{j=1}^{N} Z^j \left(\sum_{i=j}^{N} \binom{i}{j} \sum_{\lambda \in \Phi} A_i(\lambda y, \ldots, \lambda y, a\lambda, \ldots, a\lambda) - N A_j^*(y) \right), \quad y \in E, \ Z \in \mathbb{Q}.
\]

(29)

It satisfies

\[
\|R(Z)\| \leq \frac{\delta}{|N|^2}, \ Z \in \mathbb{Q}.
\]

In view of Lemma 7, \(R(Z) = 0 \), \(Z \in \mathbb{Q}_p \). Consequently \(J_P(x, y) = I_P(x, y), \ x, y \in E \).

In addition, a similar reasoning, making the substitution \(x \) by \(Zx, Z \in \mathbb{Q} \) in \(J_P(x, y) \), we can show that \(I_P(x, y) = 0 \), \(x, y \in E \) which means that \((p, q) \) is a solution of the equation (4).

It is left to prove the uniqueness statement. Let \(T \) be another GP function of degree at most \(N \), solution of the Eq. (4) such that

\[
\|g(x) - T(x)\| \leq \frac{\delta}{|N|^2}, \ x \in E.
\]

(30)

From (28) and (30) we infer that we have

\[
\|P(x) - T(x)\| = \|P(x) - g(x) + g(x) - T(x)\| \\
\leq \max \{\|P(x) - g(x)\|, \|g(x) - T(x)\|\} \\
\leq \frac{\delta}{|N|^2},
\]

for all \(x \in E \). So, by Lemma 7 we conclude that \(T - P \) is a constant, and by the fact that \(T \) and \(P \) are solution of the Eq. (4) we get \(T = P \). This completes the proof of Theorem 11.

Corollary 12. Assume that \(a, b \) are arbitrary elements of \(E \) and \(f : E \to F \) satisfying the following inequality:

\[
\|f(x + y + a) + f(x + \sigma(y) + b) - 2f(x) - 2f(y)\| \leq \delta,
\]

(31)

for all \(x, y \in E \). Then there exists a unique GP function \(P : E \to F \) solution of the equation (7), of degree at most 2, such that

\[
\|f(x) - P(x)\| \leq \frac{\delta}{4} \quad \text{for all} \ x \in E.
\]
Proof. The proof follows on putting $\Phi = \{I, \sigma\}$ in Theorem 11.

Corollary 13. Let w be a primitive N^{th} root of unity, $N \geq 2$, let a be a complex constant, p be a prime number, $\mathbb{C}_p = \mathbb{Q}_p + i\mathbb{Q}_p$, $i^2 = -1$ and $f : \mathbb{C}_p \to \mathbb{C}_p$ be a continuous function satisfying the inequality

$$\left\| \sum_{n=0}^{N-1} f(x + w^n y + w^{n+1}a) - N f(x) - N f(y) \right\| \leq \delta, \quad x, y \in \mathbb{C}_p.$$

Then there exist a unique GP function $P : \mathbb{C}_p \to \mathbb{C}_p$, of degree at most N, solution of the equation,

$$\sum_{n=0}^{N-1} f(x + w^n y + w^{n+1}a) = N f(x) + N f(y), \quad x, y \in \mathbb{C}_p,$$

such that

$$\|f(z) - P(z)\| \leq \frac{\delta}{|N|^2}, \quad z \in \mathbb{C}_p.$$

References

Ahmed Charifi
Department of Mathematics, Faculty of Science,
University of Ibn Tofail,
Kenitra, Morocco
email: charifi2000@yahoo.fr

Samir Kabbaj
Department of Mathematics, Faculty of Science,
University of Ibn Tofail,
Kenitra, Morocco
email: samkabbaj@yahoo.fr
Driss Zeglami
Department of Mathematics, E.N.S.A.M,
Moulay Ismail University,
Meknes, Morocco
email: zeglamidriss@yahoo.fr