COEFFICIENT ESTIMATES FOR CERTAIN SUBCLASSES OF SPIRALLIKE FUNCTIONS

T. YAVUZ

ABSTRACT. In this article, we derive a sharp estimates for the Taylor-Maclaurin coefficients of functions in a certain subclass of spirallike functions. Also, we give several corollaries and consequences of the main results.

2010 Mathematics Subject Classification: 30C45.

Keywords: Univalent Functions, Spirallike Functions, Coefficient Bounds, Ruscheweyh Derivative.

1. Introduction

Let \(D \) be the unit disk \(\{ z : |z| < 1 \} \), \(A \) be the class of functions analytic in \(D \), satisfying the conditions

\[
 f(0) = 0 \quad \text{and} \quad f'(0) = 1. \tag{1}
\]

Then each function \(f \) in \(A \) has the Taylor expansion

\[
 f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{2}
\]

because of the conditions (1). Let \(S \) denote class of analytic and univalent functions in \(D \) with the normalization conditions (1).

Definition 1. For \(0 \leq \alpha < 1 \) let \(S^*(\alpha) \) and \(S^c(\alpha) \) denote the class of starlike and convex univalent functions of order \(\alpha \), which are defined as the following, respectively

\[
 S^*(\alpha) = \left\{ f(z) \in S : \Re \left(\frac{zf'(z)}{f(z)} \right) > \alpha, \ z \in D \right\}
\]

and

\[
 S^c(\alpha) = \left\{ f(z) \in S : \Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha, \ z \in D \right\}.
\]
Observe that $S^\ast(0) = S^\ast$ represent standard starlike functions. A notation of α-starlikeness and α-convexity were generalized onto a complex order α by Nasr and Aouf [7]. Špaček [10] extend the class of starlike functions by introducing the class of spirallike functions of type β in \mathbb{D} and gave the following analytical characterization of spirallikeness functions of type β in \mathbb{D}.

Theorem 1. (Špaček [10]) Let the function $f(z)$ be in the normalized analytic function class A. Also let $\beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then $f(z)$ is a spirallike function of type β in \mathbb{D} if and only if

$$\text{Re}\left(\frac{e^{i\beta}zf'(z)}{f(z)}\right) > 0, \quad z \in \mathbb{D}. \quad (3)$$

We denote the the class of spirallike functions of type β in \mathbb{D} by \tilde{S}_β. Libera [6] unified and extended the classes $S^\ast(\alpha)$ and \tilde{S}_β by introducing the analytic function class \tilde{S}_β^α in \mathbb{D} as follows.

Definition 2. (Libera [6]) Let the function $f(z)$ be in the normalized analytic function class A. Also let $\beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\alpha \in [0, 1)$. We say that $f \in \tilde{S}_\beta^\alpha$ if and only if

$$\text{Re}\left(\frac{e^{i\beta}zf'(z)}{f(z)}\right) > \alpha \cos \beta \quad (z \in \mathbb{D}; \; 0 \leq \alpha < 1). \quad (4)$$

From Definition 1 and 2, we have the following inclusions:

$$\tilde{S}_\beta^0 = S^\ast(\alpha) \quad \text{and} \quad \tilde{S}_\beta^0 = \tilde{S}_\beta.$$

Libera [6] also proved the following coefficients bounds for the functions in the class \tilde{S}_β^α.

Theorem 2. (Libera [6]) If the function $f \in \tilde{S}_\beta^\alpha$ is given by (2), then

$$|a_n| \leq \prod_{j=0}^{n-2} \left[\frac{2(1-\alpha)e^{-i\beta}\cos \beta + j}{j+1}\right] \quad (n \in \mathbb{N}\setminus\{1\}; \; \mathbb{N} := \{1, 2, 3, \ldots\}). \quad (5)$$

The coefficient estimates in (5) are sharp.

Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ be analytic functions in \mathbb{D}. The Hadamard product (convolution) of f and g, denoted by $f * g$ is defined by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n, \; z \in \mathbb{D}.$$
Let $n \in \mathbb{N}_0 = \{0, 1, 2, \ldots\}$. The Ruscheweyh derivative \cite{8} of the n^{th} order of f, denoted by $D^n f(z)$, is defined by

$$D^n f(z) = \frac{z}{(1-z)^{n+1}} * f(z) = z + \sum_{k=2}^{\infty} \frac{\Gamma(n+k)}{\Gamma(n+1)(k-1)!} a_k z^k. \quad (6)$$

The Ruscheweyh derivative gave an impulse for various generalization of well known classes of functions. Exemplary, for $\alpha (0 \leq \alpha < 1)$ and $n \in \mathbb{N}_0$, Ahuja \cite{1, 2} defined the class of functions, denoted $R_n(\alpha)$, which consist of univalent functions of the form \eqref{2} that satisfying the condition

$$\text{Re} \left(e^{i\beta} z \left(\frac{D^n f(z)}{D^n f(z)} \right)' \right) > \alpha, \ z \in \mathbb{D}. \quad (7)$$

We denote that $R_0(\alpha) = S^*(\alpha)$. The class $R_n(0) = R_n$ was studied by Singh and Singh \cite{9}. With the aid of Ruscheweyh derivative we can generalize the spirallike functions as follows.

Definition 3. Let the function $f(z)$ be in the normalized analytic function class A. Also let $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Then $f(z)$ is in the class \tilde{R}_n^β if and only if

$$\text{Re} \left(e^{i\beta} z \left(\frac{D^n f(z)}{D^n f(z)} \right)' \right) > 0, \ z \in \mathbb{D}. \quad (8)$$

Note that $\tilde{R}_0^\beta = \tilde{S}_\beta$.

Definition 4. Let the function $f(z)$ be in the normalized analytic function class A. Also, let $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ and $\alpha \in [0, 1)$. Then $f(z)$ is in the class $\tilde{R}_n^\beta(\alpha)$ if and only if

$$\text{Re} \left(e^{i\beta} z \left(\frac{D^n f(z)}{D^n f(z)} \right)' \right) > \alpha \cos \beta, \ z \in \mathbb{D}. \quad (9)$$

Also, note that $\tilde{R}_0^\beta(\alpha) = \tilde{S}_\alpha^\beta$, $\tilde{R}_0^\beta(0) = \tilde{S}_\beta^\beta$, and $\tilde{R}_0^0(\alpha) = S^*(\alpha)$.

Definition 5. Let $\alpha \in [0, 1)$, $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ and let f be an univalent function of the form \eqref{2} such that $D^n f(z) \neq 0$ for $z \in \mathbb{D} \setminus \{0\}$. We say that f belongs to $\tilde{R}_n^\beta(\alpha, \lambda)$ if and only if

$$\text{Re} \left(e^{i\beta} \frac{z (D^n f(z))'}{(1-\lambda) D^n f(z) + \lambda z (D^n f(z))'} \right) > \alpha \cos \beta, \ z \in \mathbb{D}. \quad (10)$$
Definition 6. Let \(f(z) \) and \(g(z) \) are analytic functions in \(\mathbb{D} \). We say that \(f(z) \) is subordinate to \(g(z) \) in \(\mathbb{D} \) and we denote

\[
f(z) \prec g(z) \quad (z \in \mathbb{D}),
\]

if there exists a Schwarz function \(w(z) \) analytic in \(\mathbb{D} \), with

\[
w(0) = 0 \text{ and } |w(z)| < 1 \quad (z \in \mathbb{D}),
\]

such that

\[
f(z) = g(w(z)) \quad (z \in \mathbb{D}).
\]

In particular, if the function \(g \) is univalent in \(\mathbb{D} \), the above subordination is equivalent to

\[
f(0) = g(0) \text{ and } f(\mathbb{D}) \subset g(\mathbb{D}).
\]

After the proof of the Bieberbach Conjecture [3] (which is also known as de Branges Theorem [4]), many authors were interested in other interesting subclasses of normalized analytic function class \(\mathcal{A} \). In this paper, we obtain sharp coefficient bounds for functions in the class \(\tilde{R}^\beta_n(\alpha, \lambda) \) and we give a necessary and sufficient condition such that \(f \in \mathcal{A} \) belongs to \(\tilde{R}^\beta_n(\alpha, \lambda) \).

2. Main Results

In this section, we obtain coefficient conditions for functions in the class given by Definition 5. Also, we get sharp estimates for functions belong to \(\tilde{R}^\beta_n(\alpha, \lambda) \).

Theorem 3. Let \(\alpha \in [0, 1) \) and \(\beta \in (-\frac{\pi}{2}, \frac{\pi}{2}) \) and let \(f(z) \) is in the form (2) such that \(D^n f(z) \neq 0 \) for \(z \in \mathbb{D}\setminus \{0\} \). Then, \(f(z) \) belongs to the class \(\tilde{R}^\beta_n(\alpha, \lambda) \) if and only if

\[
\sum_{k=1}^{\infty} \left\{ (k-1)(1-\lambda(\alpha + i \tan \beta)) + 2e^{2i\beta} - \lambda(1-\alpha) \left(1-e^{2i\beta} \right)(k-1) \right\} A_k z^k \neq 0
\]

\[
(z \in z \in \mathbb{D}\setminus \{0\}), \tag{11}
\]

where

\[
A_k = (1+(k-1)\lambda) \frac{\Gamma(n+k)}{\Gamma(n+1)(k-1)!} a_k, \quad k \in \mathbb{N}\setminus \{1\}.
\]
Proof. Let the function \(f \in S \) be defined by \((2) \). Define a function

\[
h(z) = D^n f(z) = z + \sum_{k=2}^{\infty} A_k z^k, \quad z \in \mathbb{D}.
\]

(12)

Consider the function

\[
p(z) = e^{i\beta} \sec \beta \left(\frac{h(z)}{(1-\lambda)h(z) + \lambda z h'(z)} \right) - i \tan \beta - \alpha
\]

is an analytic function which satisfies \(p(0) = 1 \) and \(\text{Re}(p(z)) > 0 \), then \(f \in \tilde{R}_n^\beta (\alpha, \lambda) \) if and only if

\[
p(z) \neq \frac{1 - e^{2i\beta}}{1 + e^{2i\beta}}
\]

or,

\[
\frac{e^{i\beta} \sec \beta z h'(z) - (\alpha + i \tan \beta) ((1-\lambda) h(z) + \lambda z h'(z))}{(1-\alpha) ((1-\lambda) h(z) + \lambda z h'(z))} \neq \frac{1 - e^{2i\beta}}{1 + e^{2i\beta}}
\]

By using the series expansion of \(h(z) \) which is given by \((12) \), we get the following

\[
\left(1 + e^{2i\beta}\right) \sum_{k=1}^{\infty} ((k-1)(1-\alpha \lambda - i \lambda \tan \beta) + (1-\alpha)) A_k z^k
\]

\[
\neq (1-\alpha) \left(1 - e^{2i\beta}\right) \sum_{k=1}^{\infty} (1+(k-1)\lambda) A_k z^k
\]

for \(z \neq 0 \). It is equivalent to

\[
\sum_{k=1}^{\infty} \left\{(k-1) (1-\lambda (\alpha + i \tan \beta)) + 2 e^{2i\beta} - (1-\alpha) (1 - e^{2i\beta}) (k-1) \lambda \right\} A_k z^k \neq 0,
\]

which completes the proof of Theorem 3. \(\blacksquare \)

Now, we prove our coefficient estimates for functions which belong to the class \(\tilde{R}_n^\beta (\alpha, \lambda) \).

Theorem 4. Let \(\alpha \in [0,1) \) and \(\beta \in (-\frac{\pi}{2}, \frac{\pi}{2}) \) and let \(f(z) \) is in the form \((2) \) such that \(D^n f(z) \neq 0 \) for \(z \in \mathbb{D}\setminus\{0\} \). If \(f(z) \) belongs to the class \(\tilde{R}_n^\beta (\alpha, \lambda) \) then

\[
|a_k| \leq \frac{\Gamma(n+1)}{\Gamma(n+k)} \frac{1}{(1-\lambda)^{k-1}} \prod_{j=0}^{k-2} \left| j (1-\lambda) + 2 (1-\alpha) e^{i\beta} \cos \beta (1+\lambda j) \right| \quad (n \in \mathbb{N}\setminus\{1\}; \ \mathbb{N} := \{1,2,3,\ldots\}).
\]

(13)

This result is sharp.
Proof. Since \(f \in \tilde{R}^\beta_n (\alpha, \lambda) \) there exists a Schwarz function \(w(z) \), which is already introduced in Definition 6, such that
\[
e^{i\beta \sec \beta} \left(\frac{z \left(D^n f (z) \right)'}{(1 - \lambda) D^n f (z) + \lambda z \left(D^n f (z) \right)'} \right) - i \tan \beta = \frac{1 + (1 - 2\alpha) w(z)}{1 - w(z)}.
\]
Consider the function \(h(z) \) defined by (12). Then, we get
\[
\sum_{k=2}^{\infty} \left[k e^{i\beta \sec \beta} - (1 + i \tan \beta) (1 - (k - 1) \lambda) \right] A_k z^k
\]
\[
= \left(\sum_{k=1}^{\infty} \left[k e^{i\beta \sec \beta} + (1 - 2\alpha - i \tan \beta) (1 + (k - 1) \lambda) \right] A_k z^k \right) w(z). \tag{14}
\]
The last equation (14) may be written (for \(n \in \mathbb{N} \)) as follows:
\[
\sum_{k=2}^{m} \left[k e^{i\beta \sec \beta} - (1 + i \tan \beta) (1 - (k - 1) \lambda) \right] A_k z^k + \sum_{k=m+1}^{\infty} b_k z^k
\]
\[
= \left(\sum_{k=1}^{m-1} \left[k e^{i\beta \sec \beta} + (1 - 2\alpha - i \tan \beta) (1 + (k - 1) \lambda) \right] A_k z^k \right) w(z). \tag{15}
\]
The last sum on the left-hand side of (15) is convergent in \(\mathbb{D} \) for \(m = 2, 3, \ldots \).

Since, by hypothesis, \(|w(z)| < 1 \ (z \in \mathbb{D})\), it is not difficult to find by appealing to Parseval’s Theorem that
\[
\sum_{k=1}^{m-1} \left| k e^{i\beta \sec \beta} (1 - 2\alpha - i \tan \beta) (1 + (k - 1) \lambda) \right|^2 |A_k|^2
\]
\[
\geq \sum_{k=2}^{m} \left| k e^{i\beta \sec \beta} - (1 + i \tan \beta) (1 - (k - 1) \lambda) \right|^2 |A_k|^2
\]
or
\[
\sum_{k=1}^{m-1} 4 (1 - \alpha) (k - \alpha (1 + (k - 1) \lambda)) |A_k|^2 \geq \frac{(m - 1)^2 (1 - \lambda)^2}{\cos^2 \beta} |A_m|^2 \tag{16}
\]
where \(A_1 = 1 \).

We claim that
\[
|A_m| \leq \frac{1}{(m - 1)! (1 - \lambda)^{m-1}} \prod_{j=0}^{m-2} \left| j (1 - \lambda) + 2 (1 - \alpha) \cos \beta e^{i\beta} (1 + j \lambda) \right|. \tag{17}
\]
For \(m = 2\), we get from (16)

\[|A_2| \leq \frac{2(1 - \alpha) \cos \beta}{1 - \lambda},\]

which is equivalent to (17). (17) is obtained for larger \(m\) from inequality (16) by the principle of the mathematical induction.

Fix \(m, m \geq 3\), and suppose that (13) holds for \(k = 2, 3, \cdots, m - 1\). Then from (16) we get the following inequality

\[|A_m|^2 \leq \frac{4(1 - \alpha) \cos^2 \beta}{(m - 1)^2 (1 - \lambda)^2} \left\{ 1 - \alpha + \sum_{k=2}^{m-1} B(k, j, \alpha) \right\} \tag{18}\]

where

\[B(k, j, \alpha) = \frac{(1 + (k - 1) \lambda)(k - \alpha(k - 1) \lambda)}{(k - 1)! (1 - \lambda)^{k-1}} \prod_{j=0}^{k-2} \left| j(1 - \lambda) + 2(1 - \alpha) \cos \beta e^{i\beta} (1 + j\lambda) \right|^2.\]

We must show that the square of the right side of (17) is equal to the right side of (18); that is

\[\prod_{j=0}^{m-2} \left| j(1 - \lambda) + 2(1 - \alpha) \cos \beta e^{i\beta} (1 + j\lambda) \right|^2 \left[(m - 1)! (1 - \lambda)^{m-1} \right]^2 = \frac{4(1 - \alpha) \cos^2 \beta}{(m - 1)^2 (1 - \lambda)^2} \left\{ 1 - \alpha + \sum_{k=2}^{m-1} B(k, j, \alpha) \right\} \tag{19}\]

for \(m = 3, 4, \cdots\). After necessary calculations we can show that (19) is true for \(m = 3\) and proves our claim for \(m = 3\). Assume that (19) is valid for all \(k, 3 < k \leq m - 1\); then from (16) and (18) we obtain

\[|A_m|^2 \leq \frac{4(1 - \alpha) \cos^2 \beta}{(m - 1)^2 (1 - \lambda)^2} \left\{ 1 - \alpha + \sum_{k=2}^{m-2} B(k, j, \alpha) + B(m - 1, j, \alpha) \right\}\]
\[|A_m|^2 \leq \frac{4(1-\alpha)\cos^2 \beta}{(m-1)^2(1-\lambda)^2} \{ 1-\alpha + \sum_{k=2}^{m-2} \frac{(1+(k-1)\lambda)(k-\alpha(k-1)\lambda)}{(k-1)!(1-\lambda)^{k-1}} \prod_{j=0}^{k-2} |j(1-\lambda) + 2(1-\alpha)\cos \beta e^{i\beta}(1+j\lambda)|^2 \}
+ \frac{(1+(m-2)\lambda)(m-1-\alpha(m-2)\lambda)}{(m-2)!(1-\lambda)^{m-2}} \prod_{j=0}^{m-3} |j(1-\lambda) + 2(1-\alpha)\cos \beta e^{i\beta}(1+j\lambda)|^2 \}
\]

\[
\prod_{j=0}^{m-3} |j(1-\lambda) + 2(1-\alpha)\cos \beta e^{i\beta}(1+j\lambda)|^2 \frac{\{(m-2)^2}{(m-1)^2}
+4(1-\alpha)\cos^2 \beta \frac{(1+(m-2)\lambda)(m-1-\alpha(m-2)\lambda)}{(m-1)^2(1-\lambda)^2}\}
\]

\[
\prod_{j=0}^{m-3} |j(1-\lambda) + 2(1-\alpha)\cos \beta e^{i\beta}(1+j\lambda)|^2 \frac{\{(m-2)^2}{(m-1)^2}
+4(1-\alpha)\cos^2 \beta \frac{(1+(m-2)\lambda)(m-1-\alpha(m-2)\lambda)}{(m-1)^2(1-\lambda)^2}\}
\]

\[
\prod_{j=0}^{m-3} |j(1-\lambda) + 2(1-\alpha)\cos \beta e^{i\beta}(1+j\lambda)|^2 \frac{\{(m-2)^2}{(m-1)^2}
+4(1-\alpha)\cos^2 \beta \frac{(1+(m-2)\lambda)(m-1-\alpha(m-2)\lambda)}{(m-1)^2(1-\lambda)^2}\}
\]

From equality (6) we get the desired result. □

3. Corollaries and Consequences

By choosing appropriate values of values of \(n, \lambda, \beta\) and \(\alpha\) in Theorem 4, we obtain the corresponding results for several subclasses of \(S\).

Corollary 5. If \(\lambda = 0\), we get the following result for function \(f \in \tilde{R}_m^{n,\lambda}(\alpha)\)

\[
|a_k| \leq \frac{\Gamma(n+1)}{\Gamma(n+k)} \prod_{j=0}^{k-2} |j(1-\lambda) + 2(1-\alpha)\cos \beta e^{i\beta}|.
\]
Corollary 6. If \(n = 0 \) and \(\lambda = 0 \), we obtain (5) which is stated in Theorem 2.

Corollary 7. If \(n = 0 \), \(\beta = 0 \) and \(\lambda = 0 \), we obtain the following result for functions belong to \(S^* (\alpha) \)

\[
|a_k| \leq \prod_{j=0}^{k-2} \frac{|j + 2 (1 - \alpha)|}{j + 1}.
\]

Corollary 8. If \(\lambda = 0 \) and \(\alpha = 0 \), we get the following result for function \(f \in \tilde{R}_n^\beta \)

\[
|a_k| \leq \frac{\Gamma (n + 1)}{\Gamma (n + k)} \prod_{j=0}^{k-2} \left| j + 2 e^{i\beta} \cos \beta \right|.
\]

Corollary 9. If \(n = 0 \), \(\lambda = 0 \) and \(\alpha = 0 \), we get the following result for spirallike functions of type \(\beta \) in \(\mathbb{D} \)

\[
|a_k| \leq \prod_{j=0}^{k-2} \frac{|j + 2 e^{i\beta} \cos \beta|}{j + 1}.
\]

References

Tugba YAVUZ
Gebze Technical University,
Faculty of Natural Sciences,
Department of Mathematics,
Kocaeli, TURKEY
email: tyavuz@gtu.edu.tr