STARLIKENESS AND CONVEXITY OF ORDER α AND TYPE β FOR P-VALENT HYPERGEOMETRIC FUNCTIONS

R. M. EL-ASHWAH

Abstract. Given the hypergeometric function $F(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} z^n$, we place conditions on a, b, c to guarantee that $z^p F(a, b; c; z)$ will be in various subclasses of p-valent starlike and p-valent convex functions of order α and type β ($0 \leq \alpha < p, 0 < \beta \leq 1$). Operators related to the hypergeometric function are also examined.

2010 Mathematics Subject Classification: 30C45.

Keywords: p–Valent, starlike, convex, hypergeometric function.

1. INTRODUCTION

Let $S(p)$ be the class of functions of the form:

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \quad (p \in \mathbb{N} = \{1, 2, \ldots\})$$ \hspace{1cm} (1.1)

which are analytic and p-valent in the unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$. A function $f(z) \in S(p)$ is called p-valent starlike of order α if $f(z)$ satisfies

$$\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha \hspace{1cm} (1.2)$$

for $0 \leq \alpha < p, p \in \mathbb{N}$ and $z \in U$. We denote by $S_p^*(\alpha)$ the class of all p-valent starlike functions of order α and $S_p^*(0) = S_p^*$. Denote by $S_p^*(\alpha, \beta)$ the subclass consisting of functions $f(z) \in S(p)$ which satisfy

$$\left| \frac{zf'(z)}{f(z)} - p \right| < \beta \hspace{1cm} (1.3)$$

for $0 \leq \alpha < p, 0 < \beta \leq 1, p \in \mathbb{N}$ and $z \in U$. Also a function $f(z) \in S(p)$ is called p-valent convex of order α if $f(z)$ satisfies
\[\text{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \alpha \]

for \(0 \leq \alpha < p, \, p \in \mathbb{N} \) and \(z \in U \). We denote by \(K_p(\alpha) \) the class of all \(p \)-valent convex functions of order \(\alpha \) and \(K_p(0) = K_p \). Also denote by \(K_p(\alpha, \beta) \) the subclass consisting of functions \(f(z) \in S(p) \) which satisfy

\[\left| \frac{1 + \frac{zf''(z)}{f'(z)} - p}{1 + \frac{zf''(z)}{f'(z)} + p - 2\alpha} \right| < \beta \]

for \(0 \leq \alpha < p, 0 < \beta \leq 1, \, p \in \mathbb{N} \) and \(z \in U \).

It follows from (1.3) and (1.5) that

\[f(z) \in K_p(\alpha, \beta) \iff \frac{zf'(z)}{p} \in S_p(\alpha, \beta). \]

Denoting by \(T(p) \) the subclass of \(S(p) \) consisting of functions of the form:

\[f(z) = z^p - \sum_{n=p+1}^{\infty} a_n z^n \quad (a_{p+n} \geq 0; \, p \in \mathbb{N}). \]

We denote by \(T_p^*(\alpha), T_p^*(\alpha, \beta), C_p(\alpha) \) and \(C_p(\alpha, \beta) \) the classes obtained by taking intersections, respectively, of the classes \(S_p^*(\alpha), S_p^*(\alpha, \beta), K_p(\alpha) \) and \(K_p(\alpha, \beta) \) with the class \(T(p) \)

\[T_p^* = S_p^* \cap T(p) \]
\[T_p^*(\alpha) = S_p^*(\alpha) \cap T(p) \]
\[T_p^*(\alpha, \beta) = S_p^*(\alpha, \beta) \cap T(p) \]
\[C_p = K_p \cap T(p) \]
\[C_p(\alpha) = K_p(\alpha) \cap T(p) \]

and

\[C_p(\alpha, \beta) = K_p(\alpha, \beta) \cap T(p). \]
The class $S_p^*(\alpha)$ was studied by Patil and Thakare [8]. The classes $T_p^*(\alpha)$ and $C_p(\alpha)$ were studied by Owa [7], and the classes $T_p^*(\alpha, \beta)$ and $C_p(\alpha, \beta)$ were studied by Hossen [4] (see also [1]).

For $a, b, c \in \mathbb{C}$ and $c \neq 0, -1, -2, \ldots$, the Gaussian hypergeometric function is defined by:

$$F(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n (1)_n} z^n \quad (z \in U), \quad (1.8)$$

where $(\lambda)_n$ is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

$$(\lambda)_n = \frac{\Gamma(\lambda + n)}{\Gamma(\lambda)} = \left\{ \begin{array}{ll}
1 & (n = 0) \\
\lambda (\lambda + 1) \ldots \ldots (\lambda + n - 1) & (n \in \mathbb{N}).
\end{array} \right. \quad (1.9)$$

The series in (1.8) represents an analytic function in U and has an analytic continuation throughout the finite complex plane except at most for the cut $[1, \infty)$. We note that $F(a, b; c; 1)$ converges for $\Re(c - a - b) > 0$ and is related to the Gamma function by

$$F(a, b; c; 1) = \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)}. \quad (1.10)$$

Corresponding to the function $F(a, b; c; z)$ we define

$$h_p(a, b; c; z) = z^p F(a, b; c; z). \quad (1.11)$$

We observe that, for a function $f(z)$ of the form (1.1), we have

$$h_p(a, b; c; z) = z^p + \sum_{n=p+1}^{\infty} \frac{(a)_{n-p} (b)_{n-p}}{(c)_{n-p} (1)_{n-p}} z^n. \quad (1.12)$$

In [3] El-Ashwah et al. gave necessary and sufficient conditions for $z^p F(a, b; c; z)$ to be in the classes $T_p^*(\alpha)$ and $C_p(\alpha)$ ($0 \leq \alpha < p$) and has also examined a linear operator acting on hypergeometric functions. Also in [10] Silverman gave necessary and sufficient conditions for $z F(a, b; c; z)$ to be in the classes $T_1^*(\alpha) = T^*(\alpha)$ and $C_1(\alpha) = C(\alpha)$ ($0 \leq \alpha < 1$) and has also examined a linear operator acting on hypergeometric functions. Also in [6] Mostafa obtained analogous results for the classes $S^*(\alpha, \beta)$ and $C(\alpha, \beta)$ ($0 \leq \alpha < 1, 0 < \beta \leq 1$). For the other interesting developments for $z F(a, b; c; z)$ in connection with various subclasses of univalent functions, the reader can refer to the works of Carlson and Shaffer [2], Merkes and Scott [5] and Ruscheweyh and Singh [9].

In the present paper, we determine necessary and sufficient conditions for $h_p(a, b; c; z)$ to be in the classes $T_p^*(\alpha, \beta)$ and $C_p(\alpha, \beta)$.

Furthermore, we consider an integral operator related to the hypergeometric function.
2. Main Results

To establish our main results, we shall need the following lemmas.

Lemma 1 [4]. Let the function \(f(z) \) defined by (1.1).

(i) A sufficient condition for \(f(z) \in S(p) \) to be in the class \(S^*_p(\alpha, \beta) \) is that

\[
\sum_{n=p+1}^{\infty} \left\{ n(1 + \beta) - \left[p(1 - \beta) + 2\alpha\beta \right] \right\} |a_n| \leq 2\beta(p - \alpha).
\]

(ii) A sufficient condition for \(f(z) \in S(p) \) to be in the class \(K^*_p(\alpha, \beta) \) is that

\[
\sum_{n=p+1}^{\infty} \frac{n}{p} \left\{ n(1 + \beta) - \left[p(1 - \beta) + 2\alpha\beta \right] \right\} |a_n| \leq 2\beta(p - \alpha).
\]

Lemma 2 [4]. Let the function \(f(z) \) defined by (1.7). Then

(i) \(f(z) \in T(p) \) is in the class \(T^*_p(\alpha, \beta) \) if and only if

\[
\sum_{n=p+1}^{\infty} \left\{ n(1 + \beta) - \left[p(1 - \beta) + 2\alpha\beta \right] \right\} a_n \leq 2\beta(p - \alpha).
\]

(ii) \(f(z) \in T(p) \) is in the class \(C^*_p(\alpha, \beta) \) if and only if

\[
\sum_{n=p+1}^{\infty} \frac{n}{p} \left\{ n(1 + \beta) - \left[p(1 - \beta) + 2\alpha\beta \right] \right\} a_n \leq 2\beta(p - \alpha).
\]

Theorem 1. If \(a, b > 0 \) and \(c > a + b + 1 \), then a sufficient condition for \(h_p(a, b; c; z) \) to be in the class \(S^*_p(\alpha, \beta) \) (\(0 \leq \alpha < p, 0 < \beta \leq 1 \)) is that

\[
\frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} \left[1 + \frac{ab(1 + \beta)}{2\beta(p - \alpha)(c - a - b - 1)} \right] \leq 2. \tag{2.1}
\]

Condition (2.1) is necessary and sufficient for \(F_p \) defined by \(F_p(a, b; c; z) = z^p(2 - F(a, b; c; z)) \) to be in the class \(T^*_p(\alpha, \beta) \).

Proof. Since \(h_p(a, b; c; z) = z^p + \sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^n \), according to Lemma 1 (i), we need only show that

\[
\sum_{n=p+1}^{\infty} \left\{ n(1 + \beta) - \left[p(1 - \beta) + 2\alpha\beta \right] \right\} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} a_n \leq 2\beta(p - \alpha).
\]
Now
\[\sum_{n=p+1}^{\infty} \{ n(1+\beta) - [p(1-\beta) + 2\alpha\beta] \} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} \]
\[= \sum_{n=1}^{\infty} \{ (n+p)(1+\beta) - [p(1-\beta) + 2\alpha\beta] \} \frac{(a)_{n}(b)_{n}}{(c)(1)_{n}} \]
\[= (1+\beta) \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)(1)_{n}} + 2\beta(p-\alpha) \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)(1)_{n}}. \tag{2.2} \]

Noting that \((\lambda)_{n} = \lambda(\lambda+1)_{n-1}\) and then applying (1.10), we may express (2.2) as
\[\frac{ab}{c} (1+\beta) \sum_{n=1}^{\infty} \frac{(a+1)_{n-1}(b+1)_{n-1}}{(c+1)_{n-1}(1)_{n-1}} + 2\beta(p-\alpha) \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)(1)_{n}} \]
\[= \frac{ab}{c} (1+\beta) \frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} + 2\beta(p-\alpha) \left[\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} - 1 \right] \]
\[= \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left[\frac{ab(1+\beta)}{c-a-b-1} + 2\beta(p-\alpha) \right] - 2\beta(p-\alpha) \]

But this last expression is bounded above by \(2\beta(p-\alpha)\) if and only if (2.1) holds.

Since \(F_{p}(a,b;c;z) = z^{p} - \sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^{n}\), the necessity of (2.1) for \(F_{p}\) to be in the class \(T_{p}^{*}(\alpha,\beta)\) follows from Lemma 2 (i).

In the next theorem, we find constraints on \(a, b\) and \(c\) that lead to necessary and sufficient conditions for \(h_{p}(a,b;c;z)\) to be in the class \(T_{p}^{*}(\alpha,\beta)\).

Theorem 2. If \(a,b > -1, c > 0, \text{ and } ab < 0\), then a necessary and sufficient condition for \(h_{p}(a,b;c;z)\) to be in the class \(T_{p}^{*}(\alpha,\beta)\) is that \(c \geq a + b + 1 - \frac{ab(1+\beta)}{2\beta(p-\alpha)}\).

The condition \(c \geq a + b + 1 - \frac{ab}{p}\) is necessary and sufficient for \(h_{p}(a,b;c;z)\) to be in the class \(T_{p}^{*}\).

Proof. Since
\[h_{p}(a,b;c;z) = z^{p} + \sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^{n} \]
\[= z^{p} + \frac{ab}{c} \sum_{n=p+1}^{\infty} \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} z^{n} \]
\[\sum_{n=p+1}^{\infty} \{n(1+\beta) - [p(1-\beta) - 2\alpha\beta]\} \frac{(a+1)n(b+1)}{(c+1)n(1)n+1} \leq \left| \frac{c}{ab} \right| 2\beta(p-\alpha). \]

Note that the left side of (2.4) diverges if \(c \leq a + b + 1 \). Now
\[\sum_{n=0}^{\infty} \{(n+p+1)(1+\beta) - [p(1-\beta) - 2\alpha\beta]\} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_n+1} \]
\[= (1+\beta) \sum_{n=0}^{\infty} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_n} + 2\beta(p-\alpha) \frac{c}{ab} \sum_{n=1}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} \]
\[= \frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} (1+\beta) + 2\beta(p-\alpha) \frac{c}{ab} \left[\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} - 1 \right]. \]

Hence, (2.4) is equivalent to
\[\frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} \left[(1+\beta) + 2\beta(p-\alpha) \frac{c-a-b-1}{ab} \right] \leq 2\beta(p-\alpha) \left[\frac{c}{|ab|} + \frac{c}{ab} \right] = 0. \]

Thus, (2.5) is valid if and only if
\[(1+\beta) + 2\beta(p-\alpha) \frac{(c-a-b-1)}{ab} \leq 0, \]
or, equivalently,
\[c \geq a + b + 1 - \frac{ab(1+\beta)}{2\beta(p-\alpha)}. \]

Another application of Lemma 2 (i) when \(\alpha = 0 \) and \(\beta = 1 \) completes the proof of Theorem 2.

Our next theorems will parallel Theorems 1 and 2 for the p-valent convex case.

Theorem 3. If \(a, b > 0 \) and \(c > a + b + 2 \), then a sufficient condition for \(h_p(a, b; c; z) \) to be in the class \(K_p(\alpha, \beta) \), \(0 \leq \alpha < p, 0 < \beta \leq 1 \), is that
\[\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left[1 + \frac{(2p+1)(1+\beta) - [p(1-\beta) + 2\alpha\beta]}{2\beta p(p-\alpha)} \frac{ab}{(c-a-b-1)} + \right. \]
\[\frac{(1 + \beta)(a_2(b)_2)}{2\beta p(p - \alpha)(c - a - b - 2)_2} \leq 2. \quad (2.6) \]

Condition (2.6) is necessary and sufficient for \(F_p(a, b; c; z) = z^p(2 - F(a, b; c; z)) \) to be in the class \(C_p(\alpha, \beta) \).

Proof. In view of Lemma 1 (ii), we need only show that
\[
\sum_{n=p+1}^{\infty} n \{ n(1 + \beta) - [p(1 - \beta) + 2\alpha \beta] \} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} \leq 2\beta p(p - \alpha).
\]

Now
\[
\sum_{n=0}^{\infty} (n + p + 1) \{ (n + p + 1)(1 + \beta) - [p(1 - \beta) + 2\alpha \beta] \} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}}
\]
\[
= (1 + \beta) \sum_{n=0}^{\infty} (n + 1)^2 \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} + 2\beta p(1 + \beta) - [p(1 - \beta) + 2\alpha \beta] \sum_{n=0}^{\infty} (n + 1) \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}}
\]
\[
= (1 + \beta) \sum_{n=0}^{\infty} (n + 1) \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} + (2 p + 1)(1 + \beta) - [p(1 - \beta) + 2\alpha \beta] \sum_{n=0}^{\infty} (a)_{n+1}(b)_{n+1}
\]
\[
= (1 + \beta) \sum_{n=1}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} + (2 p + 1)(1 + \beta) - [p(1 - \beta) + 2\alpha \beta] \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}}
\]
\[
= (1 + \beta) \sum_{n=0}^{\infty} \frac{(a)_{n+2}(b)_{n+2}}{(c)_{n+2}(1)_{n}} + (2 p + 1)(1 + \beta) - [p(1 - \beta) + 2\alpha \beta] \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n}}
\]
\[
+ 2\beta p(p - \alpha) \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}}. \quad (2.7)
\]

Since \((a)_{n+k} = (a)_k(a + k)_{n}\), we may write (2.7) as
\[
\frac{(a)_{2}(b)_{2}}{(c)_{2}} \frac{\Gamma(c + 2)\Gamma(c - a - b - 2)}{\Gamma(c - a)\Gamma(c - b)} (1 + \beta) + \{(2 p + 1)(1 + \beta) - [p(1 - \beta) + 2\alpha \beta]\} \frac{ab}{c}.
\]
We have
\[
\frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} + 2\beta p(p-\alpha) \left[\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} - 1 \right].
\]

Upon simplification, we see that this last expression is bounded above by \(2\beta p(p-\alpha)\) if and only if \((2.6)\) holds. That \((2.6)\) is also necessary for \(F_p\) to be in the class \(C_p(\alpha, \beta)\) follows from Lemma 2 (ii).

Theorem 4. If \(a, b > -1, ab < 0\) and \(c > a + b + 2\), then a necessary and sufficient condition for \(h_p(a, b; c; z)\) to be in the class \(C_p(\alpha, \beta)\) is that

\[
(a)_{2b}(1+\beta) + \{(2p+1)(1+\beta) - [p(1-\beta) + 2\alpha \beta]\} ab(c-a-b-2)
+ 2\beta p(p-\alpha)(c-a-b-2) \geq 0.
\]

(2.8)

Proof. Since \(h_p(a, b; c; z)\) has the form (2.3), we see from Lemma 2 (ii) that our conclusion is equivalent to

\[
\sum_{n=p+1}^{\infty} n \{n(1+\beta) - [p(1-\beta) + 2\alpha \beta]\} \frac{(a+1)n-b+11n-p-1}{(c+1)n-p-1(1)n-p} \leq \left| \frac{c}{ab} \right| 2\beta p(p-\alpha).
\]

(2.9)

Note that \(c > a + b + 2\) if the left hand side of \((2.9)\) converges. Now,

\[
\sum_{n=p+1}^{\infty} n \{n(1+\beta) - [p(1-\beta) + 2\alpha \beta]\} \frac{(a+1)n-b+11n-p-1}{(c+1)n-p-1(1)n-p}
= \sum_{n=0}^{\infty} (n+p+1) \{(n+p+1)(1+\beta) - [p(1-\beta) + 2\alpha \beta]\} \frac{(a+1)n+b+1}{(c+1)n(1)n+1}
= (1+\beta) \sum_{n=0}^{\infty} (n+1) \frac{(a+1)n+b+1}{(c+1)n(1)n+1} + [p(1+3\beta) - 2\alpha \beta] \sum_{n=0}^{\infty} \frac{(a+1)n+b+1}{(c+1)n(1)n}
+ 2\beta p(p-\alpha) \sum_{n=0}^{\infty} \frac{(a+1)n+b+1}{(c+1)n(1)n+1}
= (1+\beta) \frac{(a+1)(b+1)}{(c+1)} \sum_{n=0}^{\infty} \frac{(a+2)n(b+2)n}{(c+2)n(1)n} + [p(1+3\beta) + (1+\beta) - 2\alpha b] \sum_{n=0}^{\infty} \frac{(a+1)n+b+1}{(c+1)n(1)n+1} + 2\beta p(p-\alpha) \frac{c}{ab} \sum_{n=1}^{\infty} \frac{(a)n(b)n}{(c)n(1)n}
= \frac{\Gamma(c+1)\Gamma(c-a-b-2)}{\Gamma(c-a)\Gamma(c-b)} \left\{ (a+1)(b+1)(1+\beta) + [p(1+3\beta) + (1+\beta) - 2\alpha \beta](c-a-b-2) \right\}
\]

134
This last expression is bounded above by \(\| c^{ab} \|^{2} \beta p(p - \alpha) \) if and only if

\[
(a + 1)(b + 1)(1 + \beta) + [p(1 + 3\beta) + (1 + \beta) - 2\alpha \beta](c - a - b - 2)
+ \frac{2\beta p(p - \alpha)}{ab} (c - a - b - 2)^2 \leq 0,
\]

which is equivalent to (2.8).

Putting \(p = \beta = 1 \) in Theorem 4, we obtain the following corollary.

Corollary 1. If \(a, b > -1, \ ab < 0, \) and \(c > a + b + 2, \) then \(z^p(a,b;c;z) \) is in the class \(C(\alpha) (0 \leq \alpha < 1) \), if and only if

\[
(a + 1)(b + 1)(1 + \beta) + [p(1 + 3\beta) + (1 + \beta) - 2\alpha \beta](c - a - b - 2)
+ \frac{2\beta p(p - \alpha)}{ab} (c - a - b - 2)^2 \geq 0.
\]

Remark 1. Corollary 1 corrects the result given by Silverman [10, Theorem 4].

3. An Integral Operator

In this section, we obtain results in connection with a particular integral operator \(G_p(a,b;c;z) \) acting on \(F(a,b;c;z) \) as follows:

\[
G_p(a,b;c;z) = p \int_0^z t^{p-1} F(a,b;c;t) dt
= z^p + \sum_{n=1}^{\infty} \left(\frac{p}{n + p} \right) \frac{(a)_n (b)_n}{(c)_n (1)_n} z^{n+p}.
\]

(3.1)

We note that \(\frac{zG_p'}{p} = h_p \).

To prove Theorem 5, we shall need the following lemma.

Lemma 3 [3]. (i) If \(a, b > 0 \) and \(c > a+b \), then a sufficient condition for \(G_p(a,b;c;z) \) defined by (3.1) to be in the class \(S_p^* \) is that

\[
\frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} \leq 2.
\]

(ii) If \(a, b > -1, c > 0, \) and \(ab < 0, \) then \(G_p(a,b;c;z) \) defined by (3.1) is in the class \(T(p) \) or in the class \(S(p) \) if and only if \(c > \text{max}\{a,b\} \).
Now \(G_p(a, b; c; z) \in K_p(\alpha, \beta) \) if and only if \(\frac{z}{p} G'_p(a, b; c; z) = h_p(a, b; c; z) \in S'_p(\alpha, \beta) \). This follows upon observing that \(\frac{z}{p} G'_p = h_p, \frac{z}{p} G''_p = h'_p - \frac{1}{p} G'_p \), and so

\[
1 + \frac{zG''_p}{G'_p} = \frac{zh'_p}{h_p}.
\]

Thus any \(p \)-valent starlike about \(h_p \) leads to a \(p \)-valent convex function \(G_p \). Thus from Theorems 1, 2 and Lemma 3, we obtain the following theorem.

Theorem 5. (i) If \(a, b > 0 \) and \(c > a + b + 1 \), then a sufficient condition for \(G_p(a, b; c; z) \) defined in (3.1) to be in the class \(K_p(\alpha, \beta)(0 \leq \alpha < p, 0 < \beta \leq 1) \) is that

\[
\frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} \left[1 + \frac{ab(1 + \beta)}{2\beta(p - \alpha)(c - a - p - 1)} \right] \leq 2.
\]

(ii) If \(a, b > -1, ab < 0, \) and \(c > a + b + 2 \), then a necessary and sufficient condition for \(G_p(a, b; c; z) \) to be in the class \(C_p(\alpha, \beta) \) is that \(c \geq a + b + 1 - \frac{ab(1 + \beta)}{2\beta(p - \alpha)} \).

Remark 2. (i) Putting \(\beta = 1 \) in all the above results we obtain the results, obtained by El-Ashwah et al. [3];

(ii) Putting \(p = \beta = 1 \) in all the above results we obtain the results, obtained by Silverman [10];

(iii) Putting \(p = 1 \) in all the above results we obtain the analogous results, obtained by Mostafa [6].

References

Department of Mathematics,
Faculty of Science,
Damietta University
New Damietta 34517, Egypt,
e-mail: r_elashwah@yahoo.com