ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR NONLINEAR SEMIPOSITONE SYSTEMS

A. FIROUZJAI, G.A. AFROUZI, S. TALEBI

ABSTRACT. In this paper we consider the existence of positive solutions for singular nonlinear semipositone system of the form

\[
\begin{align*}
-\text{div}(|x|^{-\alpha p}|\nabla u|^{p-2}\nabla u) &= |x|^{-(\alpha+1)p+c_1}(a_1 u^{p-1} - f_1(v) - \frac{b_1}{v^{\gamma_1}}), & x \in \Omega, \\
-\text{div}(|x|^{-\beta q}|\nabla v|^{q-2}\nabla v) &= |x|^{-(\beta+1)q+c_2}(a_2 v^{q-1} - f_2(u) - \frac{b_2}{v^{\gamma_2}}), & x \in \Omega, \\
u = v &= 0, & x \in \partial \Omega,
\end{align*}
\]

where \(\Omega\) is a bounded domain of \(\mathbb{R}^N\) with \(0 \in \Omega\), \(1 < p, q < N\), \(0 \leq \alpha < \frac{N-p}{p}\), \(0 \leq \beta < \frac{N-q}{q}\), \(\gamma_1, \gamma_2 \in (0, 1)\), and \(a_1, a_2, b_1, b_2, c_1, c_2\) are positive parameters. Here \(f_i : [0, \infty) \to \mathbb{R}\) are \(C^2\) functions for \(i = 1, 2\). We discuss the existence of positive solution when \(f_1, f_2\) satisfy certain additional conditions. We use the method of sub-super solutions to establish our results.

2010 Mathematics Subject Classification: 35J55; 35J65

Keywords: sub-super solutions; infinite semipositone systems; singular weights; population biology.

1. INTRODUCTION

We study the existence of positive solutions to the singular infinite semipositone system

\[
\begin{align*}
-\text{div}(|x|^{-\alpha p}|\nabla u|^{p-2}\nabla u) &= |x|^{-(\alpha+1)p+c_1}(a_1 u^{p-1} - f_1(v) - \frac{b_1}{v^{\gamma_1}}), & x \in \Omega, \\
-\text{div}(|x|^{-\beta q}|\nabla v|^{q-2}\nabla v) &= |x|^{-(\beta+1)q+c_2}(a_2 v^{q-1} - f_2(u) - \frac{b_2}{v^{\gamma_2}}), & x \in \Omega, \\
u = v &= 0, & x \in \partial \Omega,
\end{align*}
\]
where Ω is a bounded smooth domain of \mathbb{R}^N with $0 \in \Omega$, $1 < p, q < N$, $0 \leq \alpha < \frac{N-p}{p}$, $0 \leq \beta < \frac{N-q}{q}$, $\gamma_1, \gamma_2 \in (0, 1)$, and $a_1, a_2, b_1, b_2, c_1, c_2$ positive parameters. Here $f_i : [0, \infty) \to \mathbb{R}$ are continuous functions for $i = 1, 2$. We make the following assumptions:

(A1) There exist $L > 0$ and $b > 0$ such that $f_i(u) < Lu^b$, for all $u \geq 0$ and $i = 1, 2$.

(A2) There exists a constant $S > 0$ such that $\max\{a_1u^{p-1} - f_1(v), a_2v^{q-1} - f_2(u)\} < S$ for all $u, v \geq 0$.

Elliptic problems involving more general operator, such as the degenerate quasilinear elliptic operator given by $-\text{div}(|x|^{-\alpha p}\nabla u|^{p-2}\nabla u)$, were motivated by the following Caffarelli, Kohn and Nirenberg’s inequality (see [1], [2]). The study of this type of problem is motivated by its various applications, for example, in fluid mechanics, in newtonian fluids, in flow through porous media and in glaciology (see [3], [4]). So, the study of positive solutions of singular elliptic problems has more practical meanings. We refer to [5], [6], [7], [8] for additional results on elliptic problems. Here we focus on further extending the single equation in [9] to the system (1). Our approach is based on the method of sub-super solutions, see [10, 11].

2. Preliminaries and existing result

In this paper, we denote $W^{1,p}_0(\Omega, |x|^{-\alpha p})$, the completion of $C_0^\infty(\Omega)$, with respect to the norm $\|u\| = \left(\int_\Omega |x|^{-\alpha p}|\nabla u|^p dx\right)^\frac{1}{p}$. To precisely state our existence result we consider the eigenvalue problem

$$\begin{cases}
-\text{div}(|x|^{-sp}\nabla \phi|^{r-2}\nabla \phi) = \lambda |x|^{-\alpha p}|x|^{-t}\phi|^{p-2}\phi, & x \in \Omega, \\
\phi = 0, & x \in \partial \Omega.
\end{cases} \quad (2)$$

For $r = p$, $s = \alpha$ and $t = c_1$, let $\phi_{1,p}$ be the eigenfunction corresponding to the first eigenvalue $\lambda_{1,p}$ of (2) such that $\phi_{1,p}(x) > 0$ in Ω and $\|\phi_{1,p}\| = 1$ and for $r = q$, $s = \beta$ and $t = c_2$, let $\phi_{1,q}$ be the eigenfunction corresponding to the first eigenvalue $\lambda_{1,q}$ of (2) such that $\phi_{1,q}(x) > 0$ in Ω, and $\|\phi_{1,q}\| = 1$ (see [12, 13]). It can be shown that $\frac{\partial \phi_{1,r}}{\partial n} < 0$ on $\partial \Omega$ for $r = p, q$. Here n is the outward normal. We will also consider the unique solution $(\zeta_p(x), \zeta_q(x)) \in W_0^0(\Omega, |x|^{-\alpha p}) \times W_0^0(\Omega, |x|^{-\beta q})$ for the system

$$\begin{cases}
-\text{div}(|x|^{-\alpha p}\nabla \zeta_p|^{p-2}\nabla \zeta_p) = |x|^{-\alpha p}|x|^{-t}\zeta_p|^{p-2}\zeta_p, & x \in \Omega, \\
-\text{div}(|x|^{-\beta q}\nabla \zeta_q|^{q-2}\nabla \zeta_q) = |x|^{-\beta q}|x|^{-t}\zeta_q|^{q-2}\zeta_q, & x \in \Omega, \\
\zeta_p = \zeta_q = 0, & x \in \partial \Omega,
\end{cases}$$

38
to discuss our existence result. It is well known that \(\zeta_r(x) > 0 \) in \(\Omega \) and \(\frac{\partial \zeta_r(x)}{\partial n} < 0 \) on \(\partial \Omega \), for \(r = p, q \) (see [12]).

A pair of nonnegative functions \((\psi_1, \psi_2), (z_1, z_2) \) are called a sub-solution and super-solution of (1) if they satisfy \((\psi_1, \psi_2) = (0, 0) = (z_1, z_2) \) on \(\partial \Omega \) and

\[
\int_{\Omega} |x|^{-\alpha p} |\nabla \psi_1|^p - 2 \nabla \psi_1 \cdot \nabla w \, dx \leq \int_{\Omega} |x|^{-(\alpha+1)p+c_1}(a_1 \psi_1^{p-1} - f_1(\psi_2) - \frac{b_1}{\psi_1^q}) \, w \, dx,
\]

\[
\int_{\Omega} |x|^{-\beta q} |\nabla \psi_2|^q - 2 \nabla \psi_2 \cdot \nabla w \, dx \leq \int_{\Omega} |x|^{-(\beta+1)q+c_2}(a_2 \psi_2^{q-1} - f_2(\psi_1) - \frac{b_2}{\psi_2^p}) \, w \, dx,
\]

\[
\int_{\Omega} |x|^{-\alpha p} |\nabla z_1|^p - 2 \nabla z_1 \cdot \nabla w \, dx \geq \int_{\Omega} |x|^{-(\alpha+1)p+c_1}(a_1 z_1^{p-1} - f_1(z_2) - \frac{b_1}{z_1^q}) \, w \, dx,
\]

\[
\int_{\Omega} |x|^{-\beta q} |\nabla z_2|^q - 2 \nabla z_2 \cdot \nabla w \, dx \geq \int_{\Omega} |x|^{-(\beta+1)q+c_2}(a_2 z_2^{q-1} - f_2(z_1) - \frac{b_2}{z_2^p}) \, w \, dx.
\]

for all \(w \in W = \{ w \in C_0^\infty(\Omega) \mid w \geq 0, x \in \Omega \} \). Then the following result holds:

Lemma 1. (see [12]). Suppose there exist sub and super-solutions \((\psi_1, \psi_2) \) and \((z_1, z_2) \) respectively of (1) such that \((\psi_1, \psi_2) \leq (z_1, z_2) \). Then (1) has a solution \((u, v)\) such that \((u, v) \in [(\psi_1, \psi_2), (z_1, z_2)]\).

Theorem 2. Assume if \(a_1 > \left(\frac{p}{p-1+\gamma_1} \right)^{p-1} \lambda_{1,p}, \ a_2 > \left(\frac{q}{q-1+\gamma_2} \right)^{q-1} \lambda_{1,q} \), then there exists \(c > 0 \) such that if \(\max\{b_1, b_2\} \leq c \), then the system (1) admits a positive solution.

Proof. We start with the construction of a positive subsolution for (1). To get a positive subsolution, we can apply an anti-maximum principle (see [14]), from which we know that there exist a \(\delta_1 > 0 \) and a solution \(z_\lambda \) of

\[
\begin{cases}
-\text{div}(|x|^{-s} |\nabla z|^r - 2 \nabla z) = |x|^{-(s+1)r+t}(\lambda z^{r-1} - 1), & x \in \Omega, \\
z = 0, & x \in \partial \Omega,
\end{cases}
\]

for \(\lambda \in (\lambda_{1,r}, \lambda_{1,r} + \delta_1) \), for \(r = p, q, s = \alpha, \beta \) and \(t = c_1, c_2 \).

Fix \(\lambda_1 \in \left(\lambda_{1,p}, \min\left\{ \left(\frac{p-1+\gamma_1}{p} \right)^{p-1} a_1, \lambda_{1,p} + \delta_1 \right\} \right) \) and

\(\dot{\lambda}_2 \in \left(\lambda_{1,q}, \min\left\{ \left(\frac{q-1+\gamma_2}{q} \right)^{q-1} a_2, \lambda_{1,q} + \delta_1 \right\} \right) \). Let \(\theta_i = \|z_{\lambda_i}\| \) for \(i = 1, 2 \). It is well known that \(z_{\lambda_1}, z_{\lambda_2} > 0 \) in \(\Omega \) and \(\frac{\partial z_{\lambda_1}}{\partial n}, \frac{\partial z_{\lambda_2}}{\partial n} < 0 \) on \(\partial \Omega \), where \(n \) is the outer unit normal to \(\Omega \). Hence there exist positive constants \(\epsilon, \delta, \sigma_p, \sigma_q \) such that

\[
|x|^{-s} |\nabla z_{\lambda_i}|^r \geq \epsilon, \quad x \in \overline{\Omega}_\delta,
\]

39
\[z_{\lambda_1} \geq \sigma_r, \quad x \in \Omega_0 = \Omega \setminus \Omega_\delta, \] (5)

with \(r = p, q; \ s = \alpha, \beta; \ i = 1, 2 \) and \(\Omega_\delta = \{x \in \Omega \mid d(x, \partial \Omega) \leq \delta \} \). Choose \(\eta_1, \eta_2 > 0 \) such that \(\eta_1 \leq \min \{ |x|^{-(s+1)p+t}, \eta_2 \geq \max \{ |x|^{-(s+1)p+t}, \in \Omega_\delta \}, \) for \(r = p, q, s = \alpha, \beta \) and \(t = c_1, c_2 \). We construct a subsolution \((\psi_1, \psi_2)\) of (1) using \(z_{\lambda_1}, z_{\lambda_2} \).

Define \((\psi_1, \psi_2) = \left(M\left(\frac{p-1+\gamma_1}{p}\right) z_{\lambda_1}^{\frac{1-\gamma_1}{p}}, M\left(\frac{q-1+\gamma_2}{q}\right) z_{\lambda_2}^{\frac{1-\gamma_2}{q}} \right), \)
where

\[
M = \min \left\{ \left(\frac{p-1+\gamma_1}{p}\right)^{\gamma_1} \left(\frac{q-1+\gamma_2}{q}\right)^{\gamma_2} \lambda_1, \left(\frac{p-1+\gamma_1}{p}\right)^{\gamma_1} \left(\frac{q-1+\gamma_2}{q}\right)^{\gamma_2} \lambda_2 \right\}.
\]

Let \(w \in W \). Then a calculation shows that

\[
\nabla \psi_1 = M z_{\lambda_1}^{\frac{1-\gamma_1}{p}} \nabla z_{\lambda_1},
\]

\[
\int_{\Omega} |x|^{-\alpha p} |\nabla \psi_1|^{p-2} \nabla \psi_1 \cdot \nabla w dx = M^{p-1} \int_{\Omega} |x|^{-\alpha p} z_{\lambda_1}^{\frac{1-\gamma_1}{p}} |\nabla z_{\lambda_1}|^{p-2} \nabla z_{\lambda_1} \nabla w dx
\]

\[
= M^{p-1} \int_{\Omega} |x|^{-\alpha p} |\nabla z_{\lambda_1}|^{p-2} \nabla z_{\lambda_1} \left[\nabla \left(z_{\lambda_1}^{\frac{1-\gamma_1}{p}} w \right) - \left(\nabla z_{\lambda_1}^{\frac{1-\gamma_1}{p}} \right) w \right] dx
\]

\[
= M^{p-1} \int_{\Omega} |x|^{-\alpha (1) p+c_1} M^{p-1} \left(\frac{1-\gamma_1}{p} \right) \lambda_1 z_{\lambda_1}^{p-1} - |x|^{-\alpha p} \left(\frac{1-\gamma_1}{p} \right) \| \nabla z_{\lambda_1} \|^{p} \frac{1-\gamma_1}{p} \lambda_1 z_{\lambda_1}^{p-1} \right) w dx
\]

\[
= \int_{\Omega} |x|^{-\alpha (1) p+c_1} M^{p-1} \lambda_1 z_{\lambda_1}^{p-1} \left[a_1 \psi^{p-1} - f_1(\psi_2) - \frac{b_1}{\psi_1^p} \right] w dx,
\]

and

\[
\int_{\Omega} |x|^{-\alpha (1) p+c_1} a_1 \psi^{p-1} - f_1(\psi_2) - \frac{b_1}{\psi_1^p} w dx =
\]

\[
\int_{\Omega} |x|^{-\alpha (1) p+c_1} a_1 M^{p-1} \left(\frac{p-1+\gamma_1}{p} \right) z_{\lambda_1}^{p-1} - |x|^{-\alpha (1) p+c_1} f_1 \left(M\left(\frac{q-1+\gamma_2}{q} \right) z_{\lambda_2}^{\frac{1-\gamma_2}{q}} \right)
\]

40
\[-|x|^{-(\alpha+1)p+c_1} \frac{b_1}{M^{\gamma_1} \left(\frac{p-1+\gamma_1}{p} \right)^{\gamma_1} z^{\alpha+1} \gamma_1}} \int \Omega w dx. \] (7)

Similarly
\[\int_{\Omega} |x|^{-\beta q} |\nabla \psi_2|^q dx = \int_{\Omega} |x|^{-(\beta+1)q+c_2} M^{q-1} \frac{\gamma_1}{\gamma_2} w dx, \] (8)

and
\[\int_{\Omega} |x|^{-(\beta+1)q+c_2} \left[a_2 \psi_2^{\beta-1} - f_2(\psi_2) \right] dx = \int_{\Omega} |x|^{-(\beta+1)q+c_2} M^{q-1} \left(\frac{q-1+\gamma_2}{q} \right)^{\gamma_1} w dx, \] (9)

Let \(c = \min \left\{ M^{\beta-1+\gamma_1} \left(\frac{1-\gamma_1}{p-1+\gamma_1} \right)^{\gamma_1} \right\}, \) then we have
\[|x|^{-(\alpha+1)p+c_1} M^{\beta-1+\gamma_1} z^{\alpha+1} \gamma_1 \leq |x|^{-(\alpha+1)p+c_1} a_1 M^{p-1} \left(\frac{p-1+\gamma_1}{p} \right)^{p-1} z^{\alpha+1} \gamma_1, \] (10)

and from the choice of \(M, \) we know that
\[LM^{b-p+1} \theta_2 \frac{\phi}{q-1+\gamma_2} \leq \left(\frac{q}{q-1+\gamma_2} \right)^{p-1} \frac{2^{(1-\gamma_1)(p-1)}}{p^{1-\gamma_1}}. \] (11)

By (11) and (A1) we have
\[-|x|^{-(\alpha+1)p+c_1} M^{\beta-1} \left(\frac{1-\gamma_1}{p-1+\gamma_1} \right)^{p-1} \leq -|x|^{-(\alpha+1)p+c_1} \left| \nabla \psi_2 \right| \leq -|x|^{-(\alpha+1)p+c_1} M^{b} \left(\frac{q-1+\gamma_2}{q} \right)^{p-1} \frac{\phi}{q-1+\gamma_2}, \] (12)

Next, from (7) and definition of \(c, \) we have
\[|x|^{-\alpha p} M^{p-1} \left(\frac{1-\gamma_1}{p-1+\gamma_1} \right)^{\gamma_1} \leq |x|^{-\alpha p+1} c_1 \frac{b_1}{M^{\gamma_1} \left(\frac{p-1+\gamma_1}{p} \right)^{\gamma_1}}, \]
and

\[- |x|^{-\alpha} p M^{p-1} \frac{(1 - \gamma_1)(p - 1)}{p - 1 + \gamma_1} \frac{|\nabla z_{x_1}|^p}{z_{x_1}^{\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1}}} \leq - |x|^{-(\alpha + 1) p + c_1} \frac{b_1}{M^{\gamma_1} \frac{(p - 1 + \gamma_1)}{p} \frac{p - 1}{p - 1 + \gamma_1} \frac{1}{z_{x_1}^{\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1}}}}.
\]

Hence by using (10), (12) and (13) for \(b_1 \leq c \), we have

\[
\int_{\Omega_0} |x|^{-\alpha} p |\nabla \psi_1|^2 \nabla \psi_1 \cdot \nabla \psi \, dx \leq \int_{\Omega_0} \left[|x|^{-(\alpha + 1) p + c_1} a_1 M^{p-1} \left(\frac{p - 1 + \gamma_1}{p} \frac{p - 1}{p} \frac{1}{z_{x_1}^{\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1}}} - |x|^{-(\alpha + 1) p + c_1} f_1 \left(M \left(\frac{q - 1 + \gamma_2}{q} \frac{z_{x_1}^{\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1}}} \right) - |x|^{-(\alpha + 1) p + c_1} \frac{b_1}{M^{\gamma_1} \frac{(p - 1 + \gamma_1)}{p} \frac{p - 1}{p} \frac{1}{z_{x_1}^{\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1}}}} \right) \right] \, dx
\]

\[
= \int_{\Omega_0} |x|^{-(\alpha + 1) p + c_1} \left[a_1 \psi_1^{p-1} - f_1 (\psi_2) - \frac{b_1}{\psi_1^2} \right] \, dx.
\]

Similarly

\[
\int_{\Omega_0} |x|^{-\alpha} p |\nabla \psi_2|^2 \nabla \psi_2 \cdot \nabla \psi \, dx \leq \int_{\Omega_0} \left[|x|^{-(\alpha + 1) p + c_2} \frac{a_2 M^{q-1} \left(\frac{q - 1 + \gamma_2}{q} \frac{z_{x_1}^{\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1}}} \right) - |x|^{-(\alpha + 1) p + c_2} \frac{b_2}{M^{\gamma_2} \frac{(q - 1 + \gamma_2)}{q} \frac{z_{x_1}^{\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1}}} \right] \, dx
\]

\[
= \int_{\Omega_0} |x|^{-(\alpha + 1) p + c_2} \left[a_2 \psi_2^{q-1} - f_2 (\psi_1) - \frac{b_2}{\psi_2^2} \right] \, dx.
\]

On the other hand, on \(\Omega_0 = \Omega \setminus \Omega_\delta \), we have \(z_{x_1} \geq \sigma_p \) and \(z_{x_2} \geq \sigma_q \), for some \(0 < \sigma_p, \sigma_q < 1 \), and from the definition of \(c \), for \(b_1 \leq c \) we have

\[
\frac{b_1}{M^{\gamma_1} \frac{(p - 1 + \gamma_1)}{p} \frac{p - 1}{p} \frac{1}{z_{x_1}^{\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1}}}} \leq \frac{1}{p} M^{p-1} p \left[(\frac{p - 1 + \gamma_1}{p})^{p - 1} a_1 - \lambda_1 \right] \leq \frac{1}{p} M^{p-1} p \left[(\frac{p - 1 + \gamma_1}{p})^{p - 1} a_1 - \lambda_1 \right].
\]

Also from the choice of \(M \), we have

\[
LM^{b-1} \left(\frac{q - 1 + \gamma_2}{q} \right) z_{x_1}^{\frac{q(p-1)}{q - 1 + \gamma_2}} \leq \frac{b}{z_{x_1}^{\frac{1}{\gamma_1}} \frac{p - 1}{p - 1 + \gamma_1} \frac{1}{z_{x_1}^{\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1}}}} \leq \frac{1}{p} M^{p-1} p \left[(\frac{p - 1 + \gamma_1}{p})^{p - 1} a_1 - \lambda_1 \right].
\]

Hence from (16) and (17) we have

\[
\int_{\Omega_0} |x|^{-\alpha} p |\nabla \psi_1|^2 \nabla \psi_1 \cdot \nabla \psi \, dx = \int_{\Omega_0} \left[|x|^{-(\alpha + 1) p + c_1} \frac{a_1 M^{p-1} \left(\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1} \right)}{z_{x_1}^{\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1}}} - |x|^{-(\alpha + 1) p + c_1} \frac{b_1}{z_{x_1}^{\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1}}} \right] \, dx
\]

\[
\leq \int_{\Omega_0} |x|^{-(\alpha + 1) p + c_1} \frac{a_1 M^{p-1} \left(\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1} \right)}{z_{x_1}^{\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1}}} \, dx = \int_{\Omega_0} |x|^{-(\alpha + 1) p + c_1} \frac{1}{z_{x_1}^{\frac{p(1 - \gamma_1)}{p - 1 + \gamma_1}}} \left[\frac{1}{p} L M^{p-1} \frac{p - 1}{p - 1 + \gamma_1} \right] \, dx
\]
Similarly, we shall verify that \((\psi, z) \) in \(\Omega \). Hence, if \(\max \{ b_1, b_2 \} \leq c \), by Lemma 1 there exists a positive solution \((u, v)\) of (1) such that \((\psi_1, \psi_2) \leq (u, v) \leq (z_1, z_2)\). This completes the proof of Theorem 2.

Acknowledgements. The authors would like to thank the unknown referee for his/her valuable comments and suggestions.
References

A.Firouzjai
Department of Mathematics, Faculty of Basic Sciences
Pyame Noor University
Tehran, Iran
email: Firouzjai@phd.pnu.ac.ir

G.A. Afrouzi
Department of Mathematics, Faculty of Mathematical Sciences
University of Mazandaran
Babolsar, Iran
email: afrouzi@umz.ac.ir

S. Talebi
Department of Mathematics, Faculty of Basic Sciences, Pyame Noor University
Mashhad, Iran
email: talebi_s@yahoo.com