SOME SANDWICH-TYPE RESULTS FOR ϕ-LIKE FUNCTIONS

P. Kaur, S. Singh Billing

Abstract. Using the technique of differential subordination, we here obtain certain results for ϕ-like, starlike and close-to-convex functions.

2010 Mathematics Subject Classification: 30C45.

Keywords: analytic function, ϕ-like functions, starlike function, differential subordination, differential superordination.

1. Introduction

Let \mathcal{H} be the class of functions analytic in $E = \{z : |z| < 1\}$ and $\mathcal{H}[a,n]$ be the subclass of \mathcal{H} consisting functions of the form

$$f(z) = a + a_nz^n + a_{n+1}z^{n+1} + \cdots.$$

Let \mathcal{A} be the subclass of \mathcal{H} consisting of functions f, analytic in the open unit disk $E = \{z : |z| < 1\}$ and normalized by the conditions $f(0) = f'(0) - 1 = 0$. A function $f \in \mathcal{A}$ is said to be starlike of order β, $0 \leq \beta < 1$, if and only if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \beta, \quad z \in E.$$

The class of such functions is denoted by $\mathcal{S}^*(\beta)$. Note that $\mathcal{S}^*(0) = \mathcal{S}^*$, the class of univalent starlike functions.

A function $f \in \mathcal{A}$ is said to be close-to-convex in E if it satisfies the condition

$$\Re\left(\frac{zf'(z)}{g(z)}\right) > 0, \quad z \in E, \quad \text{for } g \in \mathcal{S}^*.$$

The class of close-to-convex functions is denoted by \mathcal{C}. Noshiro [2] and Warchawski [6] independently proved in 1934-35 that f is close-to-convex if

$$\Re(f'(z)) > 0.$$
Let $\Phi : \mathbb{C}^2 \times \mathbb{E} \to \mathbb{C}$ be an analytic function, p be an analytic function in \mathbb{E} with $(p(z), zp'(z); z) \in \mathbb{C}^2 \times \mathbb{E}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E}. Then the function p is said to satisfy first order differential subordination if

$$\Phi(p(z), zp'(z); z) \prec h(z), \quad \Phi(p(0), 0; 0) = h(0). \quad (1)$$

A univalent function q is called a dominant of the differential subordination (1) if $p(0) = q(0)$ and $p \prec q$ for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1) is said to be the best dominant of (1).

Let $\Psi : \mathbb{C}^2 \times \mathbb{E} \to \mathbb{C}$ be analytic and univalent in domain $\mathbb{C}^2 \times \mathbb{E}$, h be analytic in \mathbb{E}, p be analytic and univalent in \mathbb{E}, with $(p(z), zp'(z); z) \in \mathbb{C}^2 \times \mathbb{E}$ for all $z \in \mathbb{E}$. Then p is called a solution of the first order differential superordination if

$$h(z) \prec \Psi(p(z), zp'(z); z), \quad h(0) = \Psi(p(0), 0; 0). \quad (2)$$

An analytic function q is called a subordinant of the differential superordination (2), if $q \prec p$ for all p satisfying (2). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinates q of (2) is said to be the best subordinant of (2).

The function $f \in \mathcal{A}$ is called ϕ—like in the open unit disk \mathbb{E}, if

$$\Re \left(\frac{zf'(z)}{\phi(f(z))} \right) > 0, \quad z \in \mathbb{E},$$

where ϕ is analytic in a domain containing $f(\mathbb{E})$, $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. This concept was first introduced by Brickman [1] and he established that a function $f \in \mathcal{A}$ is univalent if and only if f is ϕ—like for some ϕ.

Using the concept of differential subordination Ruscheweyh [9] introduced and studied the following more general class of ϕ—like functions:

Let ϕ be analytic function in the domain containing $f(\mathbb{E})$, $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. Then $f \in \mathcal{A}$ is called ϕ—like w.r.t. a univalent function $q(z)$ if

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z), \quad z \in \mathbb{E}.$$

In 2005, Ravichandran et al.[10] proved the following result for ϕ—like functions:

Let $\alpha \neq 0$ be a complex number and $q(z)$ be a convex univalent function in \mathbb{E}. Suppose $h(z) = \alpha q^2(z) + (1 - \alpha)q(z) + \alpha zq'(z)$ and

$$\Re \left\{ \frac{1 - \alpha}{\alpha} + 2q(z) + \left(1 + \frac{zq''(z)}{q'(z)} \right) \right\} > 0, \quad z \in \mathbb{E}.$$

If $f \in \mathcal{A}$ satisfies

$$\frac{zf'(z)}{\phi(f(z))} \left(1 + \frac{\alpha zf''(z)}{f'(z)} + \frac{\alpha(f'(z) - (\phi(f(z)))'}{\phi(f(z))} \right) < h(z)$$

116
then
\[
\frac{zf'(z)}{\phi(f(z))} \prec q(z), \quad z \in \mathbb{E}
\]
and \(q(z)\) is best dominant.

Recently, Shanmugam et al. [5] and Ibrahim [3] also obtained the results for \(\phi\)-like functions parallel to the results of Ravichandran [10] stated above.

In the present paper, we investigate the differential operator
\[
a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))')}{\phi(g(z))} \right),
\]
where \(f, g \in A\) and \(\phi\) is an analytic function in a domain containing \(g(\mathbb{E})\) such that \(\phi(0) = 0 = \phi'(0) - 1\) and \(\phi(w) \neq 0\) for \(w \in g(\mathbb{E}) \setminus \{0\}\), for real numbers \(a\) and \(b \neq 0\).

We, here, obtain some sufficient conditions for \(\phi\)-like, starlike and close-to-convex functions.

2. Preliminaries

We shall need the following definition and Lemmas to prove our main results.

Definition 1. [7, Def. 2.2h, p.21]. We denote by \(Q\) the set of functions \(p\) that are analytic and injective in \(E \setminus B(p)\), where
\[
B(p) = \left\{ \zeta \in \partial \mathbb{E} : \lim_{z \to \zeta} p(z) = \infty \right\},
\]
are such that \(p'(\zeta) \neq 0\) for \(\zeta \in \partial \mathbb{E} \setminus B(p)\).

Lemma 1. [7, Theorem 3.4h, p.132]. Let \(q\) be univalent in \(E\) and let \(\theta\) and \(\varphi\) be analytic in a domain \(D\) containing \(q(\mathbb{E})\), with \(\varphi(w) \neq 0\), when \(w \in q(\mathbb{E})\). Set \(Q_1(z) = zq'(z)\varphi(q(z)), h(z) = \theta[q(z)] + Q_1(z)\) and suppose that either
(i) \(h\) is convex, or
(ii) \(Q_1\) is starlike.
In addition, assume that
(iii) \(\Re \left(\frac{zh'(z)}{Q_1(z)} \right) > 0\).
If \(p\) is analytic in \(E\), with \(p(0) = q(0), p(\mathbb{E}) \subset D\) and
\[
\theta[p(z)] + zp'(z)\varphi[p(z)] \prec \theta[q(z)] + zq'(z)\varphi[q(z)],
\]
then \(p(z) \prec q(z)\) and \(q(z)\) is the best dominant.
Lemma 2. [4]. Let \(q \) be univalent in \(\mathbb{E} \) and let \(\theta \) and \(\varphi \) be analytic in a domain \(\mathbb{D} \) containing \(q(\mathbb{E}) \). Set \(Q_1(z) = zq'(z)\varphi[q(z)] \), \(h(z) = \theta[q(z)] + Q_1(z) \) and suppose that
(i) \(Q_1 \) is starlike in \(\mathbb{E} \) and
(ii) \(\Re \left[\frac{\theta'(q(z))}{\varphi(q(z))} \right] > 0, \ z \in \mathbb{E}. \)
If \(p \in H[q(0), 1] \cap Q \), with \(p(\mathbb{E}) \subset \mathbb{D} \) and \(\theta[p(z)] + zp'(z)\varphi[p(z)] \) is univalent in \(\mathbb{E} \) and
\[
\theta[q(z)] + zq'(z)\varphi[q(z)] \prec \theta[p(z)] + zp'(z)\varphi[p(z)], \ z \in \mathbb{E},
\]
then \(q(z) \prec p(z) \) and \(q(z) \) is the best subordinant.

3. Main results

Theorem 3. Let \(q, q(z) \neq 0 \) be a univalent function in \(\mathbb{E} \) and satisfies the condition
\[
\Re \left(1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} \right) > \max \left\{ 0, \ -\frac{a}{b} \Re(q(z)) \right\}, \tag{3}
\]
where \(a \) and \(b(\neq 0) \) are real numbers. Let \(\phi \) be analytic function in a domain containing \(g(\mathbb{E}), \phi(0) = 0 = \phi'(0) - 1 \) and \(\phi(w) \neq 0 \) for \(w \in g(\mathbb{E}) \setminus \{0\} \). If \(f, g \in \mathcal{A}, \ \frac{zf'(z)}{\phi(g(z))} \neq 0, \ z \in \mathbb{E} \), satisfy the differential subordination
\[
\frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))')}{\phi(g(z))} \right) \prec a q(z) + b \frac{zq'(z)}{q(z)}, \tag{4}
\]
then
\[
\frac{zf'(z)}{\phi(g(z))} \prec q(z), \ z \in \mathbb{E},
\]
and \(q(z) \) is the best dominant.

Proof. Define the function \(p(z) \) by
\[
p(z) = \frac{zf'(z)}{\phi(g(z))}.
\]
Therefore
\[
\frac{zp'(z)}{p(z)} = 1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))')}{\phi(g(z))}
\]
and (4) reduces to
\[
ap(z) + b \frac{zp'(z)}{p(z)} \prec a q(z) + b \frac{zq'(z)}{q(z)}.
\]
Define θ and φ as $\theta(w) = aw$ & $\varphi(w) = \frac{b}{w}$. Both θ and φ are analytic in $\mathbb{C} \setminus \{0\}$ and $\varphi(w) \neq 0$, $w \in \mathbb{C} \setminus \{0\}$. Therefore $Q_1(z) = zq'(z)\varphi(q(z)) = b\frac{z q'(z)}{q(z)}$ and

$$h(z) = \theta(q(z)) + Q_1(z) = aq(z) + b\frac{z q'(z)}{q(z)}.$$

A little calculation yields

$$\frac{zQ_1(z)}{Q_1(z)} = 1 + \frac{z q''(z)}{q'(z)} - \frac{z q'(z)}{q(z)}$$

and

$$\frac{zh'(z)}{Q_1(z)} = \frac{a}{b}q(z) + 1 + \frac{z q''(z)}{q'(z)} - \frac{z q'(z)}{q(z)}.$$

In view of Condition 3, we have $Q_1(z)$ is starlike in E and $\Re\left(\frac{zh'(z)}{Q_1(z)}\right) > 0$.

The proof, now, follows from the Lemma 1.

On taking $\phi(z) = z$ in Theorem 3, we have the following result:

Theorem 4. Let $q, q(z) \neq 0$, be a univalent function in E, satisfying the Condition 3 of Theorem 3 for real numbers $a, b(\neq 0)$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{g(z)} \neq 0, z \in E$, satisfy the differential subordination

$$a \frac{zf'(z)}{g(z)} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z q'(z)}{g(z)}\right) < aq(z) + b\frac{z q'(z)}{q(z)},$$

then

$$\frac{zf'(z)}{g(z)} < q(z), \ z \in E,$$

and $q(z)$ is the best dominant.

On taking $\phi(z) = z$ and $g(z) = f(z)$ in Theorem 3, we have the following result:

Theorem 5. Let $q, q(z) \neq 0$ be a univalent function in E and satisfies the Condition 3 of Theorem 3 for real numbers a and $b(\neq 0)$. If $f \in \mathcal{A}, \frac{zf'(z)}{f(z)} \neq 0, z \in E$, satisfies

$$(a - b) \frac{zf'(z)}{f(z)} + b \left(1 + \frac{zf''(z)}{f'(z)}\right) < aq(z) + b\frac{z q'(z)}{q(z)},$$

then

$$\frac{zf'(z)}{f(z)} < q(z), \ z \in E,$$

and $q(z)$ is the best dominant.
On selecting \(a = 1 \) and \(b = \alpha \) in the Theorem 5, we get the following result for the class of \(\alpha \)-convex functions.

Theorem 6. Let \(\alpha \) be a non zero real number and let \(q, q(z) \neq 0 \) be a univalent function in \(E \) satisfying the Condition 3 of Theorem 3. If \(f \in A, z \in E \), satisfies

\[
(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) < q(z) + \alpha \frac{zq'(z)}{q(z)},
\]

then

\[
\frac{zf'(z)}{f(z)} < q(z), \quad z \in E,
\]

and \(q(z) \) is the best dominant.

By defining \(\phi(z) = g(z) = z \) in Theorem 3, we obtain the following result:

Theorem 7. Let \(q, q(z) \neq 0 \) be a univalent function in \(E \) and satisfying the Condition 3 of Theorem 3 for real numbers \(a, b \neq 0 \). If \(f \in A, f'(z) \neq 0, z \in E \), satisfies the differential subordination

\[
a f'(z) + b z f''(z) \frac{1}{f'(z)} < a q(z) + b zq'(z) \frac{1}{q(z)},
\]

then

\[
f'(z) < q(z), \quad z \in E,
\]

and \(q(z) \) is the best dominant.

Remark 1. It is easy to verify that dominant \(q(z) = \left(\frac{1+z}{1-z}\right)^\delta, \quad 0 < \delta \leq 1 \), satisfies the Condition 3 of Theorem 3, for real numbers \(a \) and \(b(\neq 0) \). Consequently, we get:

Theorem 8. Let \(\phi \) be analytic function in the domain containing \(g(E) \) such that \(\phi(0) = 0 = \phi'(0) - 1 \) and \(\phi(w) \neq 0 \) for \(w \in g(E) \setminus \{0\} \). If \(f, g \in A, \frac{zf'(z)}{\phi(g(z))} \neq 0, z \in E \), and for real numbers \(a \) and \(b(\neq 0) \), satisfy

\[
a z f'(z) \frac{1}{\phi(g(z))} + b \left(1 + z f''(z) \frac{1}{f'(z)} - z \phi(g(z))' \frac{1}{\phi(g(z))}\right) < a \left(1 + \frac{z}{1-z}\right)^\delta + \frac{2b \delta z}{1-z^2},
\]

then

\[
\frac{zf'(z)}{\phi(g(z))} < \left(\frac{1+z}{1-z}\right)^\delta, \quad z \in E, \quad 0 < \delta \leq 1.
\]

On taking \(\phi(z) = z \) in above theorem, we obtain:
Corollary 9. Let a and $b(\neq 0)$ are real numbers and $0 < \delta \leq 1$. If $f, g \in \mathcal{A}$, $\frac{zf'(z)}{g(z)} \neq 0$, $z \in \mathbb{E}$, satisfy

$$a \frac{zf'(z)}{g(z)} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)}\right) < a \left(\frac{1 + z}{1 - z}\right)^\delta + \frac{2b\delta z}{1 - z^2},$$

then

$$\frac{zf'(z)}{g(z)} < \left(\frac{1 + z}{1 - z}\right)^\delta, \ z \in \mathbb{E}.$$

For $\phi(z) = z$ and $g(z) = f(z)$ in Theorem 8, we obtain the following result:

Corollary 10. Let a and $b(\neq 0)$ are real numbers and $0 < \delta \leq 1$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$(a - b) \frac{zf'(z)}{f(z)} + b \left(1 + \frac{zf''(z)}{f'(z)}\right) < a \left(\frac{1 + z}{1 - z}\right)^\delta + \frac{2b\delta z}{1 - z^2},$$

then

$$\frac{zf'(z)}{f(z)} < \left(\frac{1 + z}{1 - z}\right)^\delta, \ z \in \mathbb{E},$$

and hence $f(z)$ is starlike.

Selecting $a = 1$ and $b = \alpha$ in above corollary, we get the following result for the class of α-convex functions:

Corollary 11. Let α be a non-zero real number. If $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies

$$(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) < \left(\frac{1 + z}{1 - z}\right)^\delta + \frac{2b\delta z}{1 - z^2},$$

then

$$\frac{zf'(z)}{f(z)} < \left(\frac{1 + z}{1 - z}\right)^\delta, \ z \in \mathbb{E}, \ 0 < \delta \leq 1.$$

Hence $f(z)$ is strongly starlike.

On taking $\phi(z) = g(z) = z$ in Theorem 8, we have:
Corollary 12. Let a and $b (\neq 0)$ be real numbers. If $f \in \mathcal{A}, \ f'(z) \neq 0, \ z \in \mathbb{E}$, satisfies

$$af'(z) + bzf''(z) f'(z) \prec a \left(\frac{1 + z}{1 - z} \right)^\delta + \frac{2b \delta z}{1 - z^2},$$

then

$$f'(z) \prec \left(\frac{1 + z}{1 - z} \right)^\delta, \ z \in \mathbb{E}, \ 0 < \delta \leq 1,$$

and hence $f(z)$ is close-to-convex.

Remark 2. When we select the dominant $q(z) = e^z$, then this dominant satisfies the Condition 3 of Theorem 3 for non-zero real numbers a and b such that $\Re(e^z) > -\frac{b}{a}$.

Consequently, we obtain the following result:

Theorem 13. Let a and b be non-zero real numbers such that $\Re(e^z) > -\frac{b}{a}$ and let ϕ be analytic function in a domain containing $g(\mathbb{E}), \ \phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \ \frac{zf'(z)}{\phi(g(z))} \neq 0, \ z \in \mathbb{E}$, satisfy

$$a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{\phi(g(z))} \right) \prec ae^z + bz,$$

then

$$\frac{zf'(z)}{\phi(g(z))} \prec e^z, \ z \in \mathbb{E}.$$

On choosing $\phi(z) = z$ in above theorem, we obtain:

Corollary 14. Let a and b non-zero real numbers such that $\Re(e^z) > -\frac{b}{a}$. If $f, g \in \mathcal{A}, \ \frac{zf'(z)}{g(z)} \neq 0, \ z \in \mathbb{E}$, satisfy the differential subordination

$$a \frac{zf'(z)}{g(z)} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{g(z)} \right) \prec ae^z + bz,$$

then

$$\frac{zf'(z)}{g(z)} \prec e^z, \ z \in \mathbb{E}.$$

On selecting $\phi(z) = z$ and $g(z) = f(z)$ in Theorem 13, we get:
Corollary 15. Let a and b be non-zero real numbers such that $\Re(e^z) > -\frac{b}{a}$. If $f \in A$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in E$, satisfies the differential subordination

$$(a - b)\frac{zf''(z)}{f(z)} + b\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec ae^z + bz,$$

then

$$\frac{zf'(z)}{f(z)} \prec e^z, \ z \in E,$$

and hence $f(z)$ is starlike.

on choosing $a = 1$ and $b = \alpha$ in above corollary, we obtain:

Corollary 16. Let α be a non-zero real number such that $\Re(e^z) > -\alpha$. If $f \in A$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in E$, satisfies

$$(1 - \alpha)\frac{zf''(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec e^z + \alpha z,$$

Then, $f \in S^*.$

For $\phi(z) = g(z) = z$ in Theorem 13, we obtain the following result:

Corollary 17. Let a and b be non-zero real numbers such that $\Re(e^z) > -\frac{b}{a}$. If $f \in A$, $f'(z) \neq 0$, $z \in E$, satisfies

$$af'(z) + b\frac{zf''(z)}{f'(z)} \prec ae^z + bz,$$

then

$$f'(z) \prec e^z, \ z \in E,$$

and hence $f(z)$ is close-to-convex.

Remark 3. By selecting the dominant $q(z) = 1 + mz, 0 < m \leq 1$, we observed that the Condition 3 of Theorem 3 holds for all real numbers a and $b(\neq 0)$ having same sign. Thus from Theorem 3, we have the following result.
Theorem 18. Let \(\phi \) be analytic function in the domain containing \(g(\mathbb{E}) \), where \(\phi(0) = 0 = \phi'(z) - 1 \) and \(\phi(w) \neq 0 \) for \(w \in g(\mathbb{E}) \setminus \{0\} \). Let real numbers \(a \) and \(b \neq 0 \) be such that \(\frac{a}{b} > 0 \). If \(f, g \in A \), \(\frac{zf'(z)}{\phi(g(z))} \neq 0 \), \(z \in \mathbb{E} \), satisfy

\[
a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))} \right) < a(1 + mz) + \frac{bmz}{1 + mz},
\]

then

\[
\frac{zf'(z)}{\phi(g(z))} < 1 + mz, \text{ where } 0 < m \leq 1, \ z \in \mathbb{E}.
\]

Taking \(\phi(z) = z \) in above theorem, we get the following result:

Corollary 19. Let \(a \) and \(b \) are non-zero real numbers having same sign and \(0 < m \leq 1 \). If \(f, g \in A \), \(\frac{zf'(z)}{g(z)} \neq 0 \), \(z \in \mathbb{E} \), satisfy

\[
a \frac{zf'(z)}{g(z)} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)} \right) < a(1 + mz) + \frac{bmz}{1 + mz},
\]

then

\[
\frac{zf'(z)}{g(z)} < 1 + mz, \ z \in \mathbb{E}.
\]

From Theorem 18, for \(\phi(z) = z \) and \(g(z) = f(z) \), we obtain:

Corollary 20. Let \(a \) and \(b \) be non-zero real numbers having same sign and \(0 < m \leq 1 \). If \(f \in A \), \(\frac{zf'(z)}{f(z)} \neq 0 \), \(z \in \mathbb{E} \), satisfies

\[
(a - b) \frac{zf'(z)}{f(z)} + b \left(1 + \frac{zf''(z)}{f'(z)} \right) < a(1 + mz) + \frac{bmz}{1 + mz},
\]

then

\[
\frac{zf'(z)}{f(z)} < 1 + mz, \ z \in \mathbb{E},
\]

and hence \(f(z) \) is starlike.

On selecting \(a = 1 \) and \(b = \alpha \) in above corollary, we get the following result:

Corollary 21. For \(\alpha > 0 \), if \(f \in A \), \(\frac{zf'(z)}{f(z)} \neq 0 \), \(z \in \mathbb{E} \), satisfies the differential subordination

\[
(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) < (1 + mz) + \frac{\alpha mz}{1 + mz},
\]

124
then
\[
\frac{zf'(z)}{f(z)} < 1 + mz, \quad 0 < m \leq 1,
\]
and hence \(f(z) \) is starlike.

Selecting \(\phi(z) = g(z) = z \), in Theorem 18, we have:

Corollary 22. Let \(a \) and \(b (\neq 0) \) be real numbers having same sign. If \(f \in \mathcal{A} \), \(f'(z) \neq 0 \), \(z \in \mathbb{E} \), satisfies
\[
a f'(z) + b \frac{zf''(z)}{f'(z)} < a(1 + mz) + \frac{bmz}{1 + mz},
\]
then
\[
f'(z) < 1 + mz, \quad 0 < m \leq 1, \quad z \in \mathbb{E},
\]
and hence \(f(z) \) is close-to-convex.

Remark 4. Let \(q(z) = \frac{\beta(1 - z)}{\beta - z} \), then
\[
\Re \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) = \Re \left(\frac{\beta - z^2}{(\beta - z)(1 - z)} \right) > 0, \quad \text{for } \beta > 1
\]
and
\[
\Re q(z) = \Re \left(\frac{\beta(1 - z)}{\beta - z} \right) > 0.
\]
In view of the above calculations, the Condition 3 of Theorem 3 is satisfied for real numbers \(a \) and \(b (\neq 0) \) such that \(\frac{a}{b} > 0 \). Consequently, we obtain the following result:

Theorem 23. Let \(\phi \) be analytic function in the domain containing \(g(\mathbb{E}) \), where \(\phi(0) = 0 = \phi'(z) - 1 \) and \(\phi(w) \neq 0 \) for \(w \in g(\mathbb{E}) \setminus \{0\} \). If \(f \in \mathcal{A} \), \(\frac{zf'(z)}{\phi(g(z))} \neq 0 \), \(z \in \mathbb{E} \), for real numbers \(a \), and \(b (\neq 0) \) such that \(\frac{a}{b} > 0 \), satisfies
\[
a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))')'}{\phi(g(z))} \right) < a \frac{\beta(1 - z)}{\beta - z} + b \frac{(1 - \beta)z}{(\beta - z)(1 - z)},
\]
then
\[
\frac{zf'(z)}{\phi(g(z))} < \frac{\beta(1 - z)}{\beta - z}, \quad z \in \mathbb{E}, \quad \text{where } \beta > 1.
\]
Taking \(\phi(z) = z \), we get the following result from above theorem:
Corollary 24. If \(f, g \in A \), \(\frac{zf'(z)}{g(z)} \neq 0 \), \(z \in \mathbb{E} \), satisfy the differential subordination
\[
a \frac{zf'(z)}{g(z)} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)} \right) < \frac{a\beta(1-z)}{\beta - z} + \frac{b(1-\beta)z}{(\beta - z)(1-z)},
\]
then
\[
\frac{zf'(z)}{g(z)} < \frac{\beta(1-z)}{\beta - z}, \quad z \in \mathbb{E},
\]
where \(\beta > 1 \) and \(a, b \neq 0 \) are real numbers having same sign.

On selecting \(\phi(z) = z \) and \(g(z) = f(z) \) in Theorem 23, we obtain:

Corollary 25. Let \(a \) and \(b \neq 0 \) be real numbers having same sign and \(\beta > 1 \). If \(f \in A \), \(\frac{zf'(z)}{f(z)} \neq 0 \), \(z \in \mathbb{E} \), satisfies
\[
(1-a) \frac{zf'(z)}{f(z)} + b \left(1 + \frac{zf''(z)}{f'(z)} \right) < \frac{a\beta(1-z)}{\beta - z} + \frac{b(1-\beta)z}{(\beta - z)(1-z)},
\]
then
\[
\frac{zf'(z)}{f(z)} < \frac{\beta(1-z)}{\beta - z}, \quad z \in \mathbb{E},
\]
and hence \(f(z) \) is starlike.

Choosing \(a = 1 \) and \(b = \alpha \) in above corollary, we get:

Corollary 26. For \(\alpha > 0 \), if \(f \in A \), \(\frac{zf'(z)}{f(z)} \neq 0 \), \(z \in \mathbb{E} \), satisfies the differential subordination
\[
(1-\alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) < \frac{\beta(1-z)}{\beta - z} + \frac{\alpha(1-\beta)z}{(\beta - z)(1-z)},
\]
then
\[
\frac{zf'(z)}{f(z)} < \frac{\beta(1-z)}{\beta - z}, \quad \alpha > 1, \quad z \in \mathbb{E},
\]
i.e. \(f \in S^* \).

Taking \(\phi(z) = g(z) = z \) in Theorem 23, we have:
Corollary 27. Let \(a, b (\neq 0) \) be real numbers having same sign and \(\beta > 1 \). If \(f \in A, f'(z) \neq 0, z \in E, \) satisfies
\[
af'(z) + b \frac{zf''(z)}{f(z)} < \frac{a\beta(1-z)}{\beta-z} + \frac{b(1-\beta)z}{(\beta-z)(1-z)},
\]
then
\[
f'(z) < \frac{\beta(1-z)}{\beta-z}, \quad z \in E,
\]
and hence \(f(z) \) is close-to-convex.

Remark 5. On selecting the dominant \(q(z) = 1 + \frac{2}{3}z^2 \) in Theorem 3, it is easy to check that this dominant satisfies the Condition 3 of Theorem 3 for real numbers \(a \) and \(b \) of same sign, as
\[
\Re \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))} \right) = 2\Re \left(1 + \frac{2}{3}z^2 \right)^{-1} > 0
\]
and
\[
\Re q(z) = \Re \left(1 + \frac{2}{3}z^2 \right) > 0.
\]
Consequently, we obtain the following result:

Theorem 28. For real numbers \(a \) and \(b (\neq 0) \) of same sign, if \(f, g \in A, \frac{zf'(z)}{\phi(g(z))} \neq 0, z \in E, \) satisfy
\[
a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))} \right) < a \left(1 + \frac{2}{3}z^2 \right) + \frac{4bz^2}{3 + 2z^2},
\]
then
\[
\frac{zf'(z)}{\phi(g(z))} < 1 + \frac{2}{3}z^2, \quad z \in E.
\]
Here, \(\phi \) is an analytic function in the domain containing \(g(E) \), such that \(\phi(0) = 0 = \phi'(z) - 1 \) and \(\phi(w) \neq 0 \) for \(w \in g(E) \setminus \{0\} \).

By selecting \(\phi(z) = z \) in above theorem, we obtain:

Corollary 29. Let \(a \) and \(b (\neq 0) \) be real numbers such that \(a > b \). If \(f, g \in A, \frac{zf'(z)}{g(z)} \neq 0, z \in E, \) satisfy
\[
a \frac{zf'(z)}{g(z)} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{g(z)} \right) < a \left(1 + \frac{2}{3}z^2 \right) + \frac{4bz^2}{3 + 2z^2},
\]
then
\[\frac{zf'(z)}{g(z)} < 1 + \frac{2}{3}, \quad z \in \mathbb{E}. \]

On taking \(\phi(z) = z \) and \(g(z) = f(z) \) in Theorem 28, we have:

Corollary 30. Let \(a \) and \(b(\neq 0) \) be real numbers such that \(\frac{a}{b} > 0 \). If \(f \in \mathcal{A}, \ \frac{zf'(z)}{f(z)} \neq 0, \ z \in \mathbb{E}, \) satisfies
\[
(a - b)\frac{zf'(z)}{f(z)} + b \left(1 + \frac{zf''(z)}{f'(z)}\right) < a \left(1 + \frac{2}{3}z^2\right) + \frac{4bz^2}{3 + 2z^2},
\]
then
\[\frac{zf'(z)}{f(z)} < 1 + \frac{2}{3}z^2, \quad z \in \mathbb{E}, \]
and hence \(f(z) \) is starlike.

If we take \(a = 1 \) and \(b = \alpha \) in above corollary, we get:

Corollary 31. For \(\alpha > 0 \), if \(f \in \mathcal{A}, \ \frac{zf'(z)}{f(z)} \neq 0, \ z \in \mathbb{E}, \) satisfies the differential subordination
\[
(1 - \alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) < \left(1 + \frac{2}{3}z^2\right) + \frac{4\alpha z^2}{3 + 2z^2},
\]
then
\[\frac{zf'(z)}{f(z)} < 1 + \frac{2}{3}z^2, \quad z \in \mathbb{E}, \]
and hence \(f(z) \in \mathcal{S}^* \).

In Theorem 28, by selecting \(\phi(z) = g(z) = z \), we obtain:

Corollary 32. Let real numbers \(a \) and \(b(\neq 0) \) be such that \(\frac{a}{b} > 0 \). If \(f \in \mathcal{A}, \ f'(z) \neq 0, \ z \in \mathbb{E}, \) satisfies
\[
a f'(z) + b \frac{zf''(z)}{f'(z)} < a \left(1 + \frac{2}{3}z^2\right) + \frac{4bz^2}{3 + 2z^2},
\]
then
\[f'(z) < 1 + \frac{2}{3}z^2, \quad z \in \mathbb{E}, \]
and hence \(f(z) \) is close-to-convex.
4. Sandwich Type Results

Theorem 33. Let \(a \) and \(b \neq 0 \) be real numbers such that \(\frac{a}{b} > 0 \). Let \(q, q(z) \neq 0 \) be univalent function in the unit disk \(\mathbb{E} \), with \(q(0) = 1 \) such that \(\frac{zq'(z)}{q(z)} \) is starlike univalent in \(\mathbb{E} \) and \(\Re q(z) > 0 \). Let \(\phi \) be analytic function in the domain containing \(g(\mathbb{E}) \), where \(\phi(0) = 0 = \phi'(0) - 1 \) and \(\phi(w) \neq 0 \) for \(w \in g(\mathbb{E}) \setminus \{0\} \). If \(f, g \in A \), \(\frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[g(0), 1] \cap Q \) with \(\frac{zf'(z)}{\phi(g(z))} \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'f'(z) - \phi(g(z))'}{\phi(g(z))} \right) \) is univalent in \(\mathbb{E} \), satisfy

\[
aq(z) + b \frac{zq'(z)}{q(z)} \prec a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'f'(z) - \phi(g(z))'}{\phi(g(z))} \right),
\]

then

\[
q(z) \prec \frac{zf'(z)}{\phi(g(z))}, \quad z \in \mathbb{E},
\]

and \(q(z) \) is the best subordinant.

Proof: Write \(p(z) = \frac{zf'(z)}{\phi(g(z))} \), then (5) becomes

\[
aq(z) + b \frac{zq'(z)}{q(z)} \prec ap(z) + b \frac{zp'(z)}{p(z)}.
\]

By defining \(\theta \) and \(\varphi \) as \(\theta(w) = aw \) and \(\varphi(w) = \frac{b}{w} \), where \(\theta \) and \(\varphi \) are analytic in \(\mathbb{C} \setminus \{0\} \) and \(\varphi(w) \neq 0, \ w \in \mathbb{C} \setminus \{0\} \). Therefore,

\[
Q_1(z) = zq'(z)\varphi(q(z)) = b \frac{zq'(z)}{q(z)}.
\]

A little calculation yields

\[
\frac{zQ_1(z)}{Q_1(z)} = 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}
\]

and

\[
\frac{\theta'(q(z))}{\varphi(q(z))} = \frac{aq(z)}{b}.
\]

In view of the given conditions, \(Q_1(z) \) is starlike and \(\Re \left[\frac{\theta'(q(z))}{\varphi(q(z))} \right] > 0, \ z \in \mathbb{E} \). Hence the proof, now, follows from Lemma 2.
Theorem 34. Let \(q_1(z) \neq 0 \) and \(q_2(z) \neq 0 \) be univalent in \(E \) such that \(q_1(z) \) satisfies the condition of Theorem 33 whereas \(q_2(z) \) satisfies the Condition 3 of Theorem 3. Let \(\phi(z) \) be analytic function in the domain containing \(g(E) \) such that \(\phi(0) = 0 = \phi'(0) - 1 \) and \(\phi(w) \neq 0 \) for \(w \in g(E) \setminus \{0\} \). Let \(f, g \in A \), \(\frac{zf'(z)}{\phi(g(z))} \in H[1,1] \cap Q \) and
\[
a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))} \right) \]be univalent in \(E \), where \(a \) and \(b(\neq 0) \) are real numbers. Further, if
\[
aq_1(z) + b \frac{zq_1'(z)}{q_1(z)} < a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))} \right) < aq_2(z) + b \frac{zq_2'(z)}{q_2(z)},
\]
then
\[
q_1(z) < \frac{zf'(z)}{\phi(g(z))} < q_2(z), \ z \in E.
\]
Moreover, \(q_1(z) \) and \(q_2(z) \) are the best subordinant and the best dominant respectively.

Taking \(q_1(z) = 1 + mz \) and \(q_2(z) = 1 + nz \), \(0 < m < n \leq 1 \), in Theorem 33, we have the following result:

Corollary 35. Let \(\phi(z) \) be an analytic function in the domain containing \(g \in E \) such that \(\phi(0) = 0 = \phi'(0) - 1 \) and \(\phi(w) \neq 0 \) for \(w \in g(E) \setminus \{0\} \). Let \(a, b(\neq 0) \) be real numbers such that \(\frac{a}{b} > 0 \). If \(f, g \in A \) be such that \(\frac{zf'(z)}{\phi(g(z))} \in H[1,1] \cap Q \) with
\[
a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))} \right)
is univalent in \(E \) and satisfy
\[
a(1+mz) + b \frac{bmz}{1+sz} < a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))} \right) < a(1+nz) + b \frac{zmz}{1+sz}
\]
then
\[
1 + mz < \frac{zf'(z)}{\phi(g(z))} < 1 + nz, \ z \in E,
\]
where \(m \) and \(n \) are real numbers, such that \(0 < m < n \leq 1 \).

On selecting \(m = 1/4 \), \(n = 1/2 \) and \(a = 1 = b \) in above corollary, we obtain:

Example 1. Let \(\phi(z) \) be a analytic function in the domain containing \(g(E) \), where \(\phi(0) = 0 = \phi'(0) - 1 \) and \(\phi(w) \neq 0 \) for \(w \in g(E) \setminus \{0\} \). Let \(f, g \in A \) be such that \(\frac{zf'(z)}{\phi(g(z))} \in H[1,1] \cap Q \) with \(1 + \frac{zf'(z)}{\phi(g(z))} + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))} \) is univalent in \(E \), and satisfy
\[
\frac{z}{4} + \frac{z}{4-z} < \frac{zf'(z)}{\phi(g(z))} + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))} < \frac{z}{2} + \frac{z}{2+z},
\]
(6)
then
\[
1 + \frac{z}{4} < \frac{zf'(z)}{\phi(g(z))} < 1 + \frac{z}{2}, \quad z \in \mathbb{E}.
\]

(7)

In Example 1, on taking \(\phi(z) = z\), we get:

Example 2. Let \(f, g \in \mathcal{A}\) be such that
\[
\frac{zf'(z)}{g(z)} \in \mathcal{H}[1,1] \cap \mathbb{Q} \text{ with } 1 + \frac{zf'(z)}{g(z)} + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)} \text{ is univalent in } \mathbb{E} \text{ and satisfy}
\]
\[
\frac{z}{4} + \frac{z}{4+z} < \frac{zf'(z)}{g(z)} < \frac{z}{2} + \frac{z}{2+z}
\]

then
\[
1 + \frac{z}{4} < \frac{zf'(z)}{g(z)} < 1 + \frac{z}{2}, \quad z \in \mathbb{E}.
\]

On selecting \(\phi(z) = z\) and \(g(z) = f(z)\) in Example 1, we get:

Example 3. Suppose \(f \in \mathcal{A}\) is such that
\[
\frac{zf'(z)}{f(z)} \in \mathcal{H}[1,1] \cap \mathbb{Q} \text{ with } 1 + \frac{zf''(z)}{f'(z)} \text{ is univalent in } \mathbb{E} \text{ and satisfies}
\]
\[
\frac{z}{4} + \frac{z}{4+z} < \frac{zf''(z)}{f'(z)} < \frac{z}{2} + \frac{z}{2+z}
\]

then
\[
1 + \frac{z}{4} < \frac{zf'(z)}{f(z)} < 1 + \frac{z}{2}, \quad z \in \mathbb{E}.
\]

On taking \(\phi(z) = g(z) = z\) in Example 1, we have:

Example 4. Suppose \(f \in \mathcal{A}\) is such that \(f'(z) \in \mathcal{H}[1,1] \cap \mathbb{Q}\) with \(f'(z) + \frac{zf''(z)}{f'(z)}\) is univalent in \(\mathbb{E}\) and satisfies
\[
1 + \frac{z}{4} + \frac{z}{4+z} < f'(z) + \frac{zf''(z)}{f'(z)} < 1 + \frac{z}{2} + \frac{z}{2+z},
\]

then
\[
1 + \frac{z}{4} < f'(z) < 1 + \frac{z}{2}, \quad z \in \mathbb{E}.
\]
Using Mathematica 10.0, we plot the images of the unit disk under the functions $\frac{z}{4} + \frac{z}{4+z}$ and $\frac{z}{2} + \frac{z}{2+z}$ of (6) in Figure 1 and $1 + \frac{z}{4}$ and $1 + \frac{z}{2}$ of (7) in Figure 2. It follows that if \[
\frac{zf'(z)}{\phi(g(z))} + \frac{zf''(z)}{f'(z)\phi(g(z))} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\]
takes values in the light shaded portion.
of Figure 1, then $\frac{zf'(z)}{\phi(g(z))}$ will take values in the light shaded portion of Figure 2. Consequently, in view of Example 3 and Example 4, f is starlike and close to convex respectively.

REFERENCES

Pardeep kaur
Department of Applied Sciences,
Baba Banda Singh Bahadur Engineering College,
Fatehgarh Sahib-140407, Punjab, India.
e-mail: aradhitadhiman@gmail.com

Sukhwinder Singh Billing
Department of Mathematics,
Sri Guru Granth Shaib World University,
Fatehgarh Sahib-140407, Punjab, India.
e-mail: ssbilling@gmail.com