UNIVALENCY OF SOME OPERATORS FOR ANALYTIC FUNCTIONS

S. OWA, H. SAITO H, J. SOKÓL, M. NUNOKAWA

ABSTRACT. For analytic functions $f(z)$ in the open unit disk U, univalency of some integral operators concerning with Alexander type integrals is considered. Also some subordinations for analytic functions $f(z)$ in U are discussed with the Schwarzian derivative of $f(z)$.

2010 Mathematics Subject Classification: 30C45, 30C80.

Keywords: Schwarzian derivative, Bazilević function, close-to-convex function, subordination, convex function.

1. Introduction

Let \mathcal{H} denote the class of functions $f(z)$ which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. Also let \mathcal{A} be the subclass of \mathcal{H} consisting of functions $f(z)$ of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (z \in U).$$

Let \mathcal{S} be the subclass of \mathcal{A} consisting of $f(z)$ which are univalent in U. If $f(z) \in \mathcal{A}$ satisfies

$$\text{Re} \left(\frac{zf''(z)}{f'(z)} \right) > \alpha \quad (z \in U)$$

for some real $\alpha (0 \leq \alpha < 1)$, then $f(z)$ is said to be starlike of order α in U and denoted by $f(z) \in \mathcal{S}^*(\alpha)$. For $\alpha = 0$, we say that $f(z) \in \mathcal{S}^*$ is starlike with respect to the origin. Further, if a function $f(z) \in \mathcal{A}$ satisfies $zf''(z) \in \mathcal{S}^*(\alpha) (0 \leq \alpha < 1)$, then $f(z)$ is said to be convex of order α in U and denoted by $f(z) \in \mathcal{K}(\alpha)$. A function $f(z) \in \mathcal{K}(\alpha)$ satisfies

$$\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha \quad (z \in U).$$
For $\alpha = 0$, we write that $K(0) = K$. We note that

$$K(\alpha) \subset S^*(\alpha) \subset S \subset A \subset H.$$

If there exists a function $g(z) \in K$ such that

$$\text{Re} \left(e^{-i\beta} \frac{f'(z)}{g(z)} \right) > 0 \quad (z \in \mathbb{U})$$

for $\beta \in (-\pi/2, \pi/2)$ and $f(z) \in A$, then $f(z)$ is said to be close-to-convex in \mathbb{U} and denoted by $f(z) \in C$. It is known that $C \subset S$.

For $f(z) \in H$, the Schwarzian derivative of $f(z)$ is given by

$$\{f; z\} = 6 \left(\frac{\partial^2}{\partial z^2} \log \left(\frac{f(z) - f(\zeta)}{z - \zeta} \right) \right)_{z=\zeta} = \left(\frac{f''(z)}{f'(z)} \right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)} \right)^2.$$

For the Schwarzian derivative $\{f; z\}$ for $f(z) \in H$, it is well-known that if $f(z) \in H$ is univalent in \mathbb{U}, then

$$|\{f; z\}| \leq \frac{6}{(1 - |z|^2)^2} \quad (z \in \mathbb{U})$$

and the equality holds true for the Koebe function $f(z) = z/(1 - z)^2$. Further, we know that the Nehari’s condition (see Nehari [10])

$$|\{f; z\}| \leq \frac{2}{(1 - |z|^2)^2} \quad (z \in \mathbb{U})$$

implies that $f(z) \in H$ is univalent in \mathbb{U}.

Note that $f(z) \in A$ is uniformly locally univalent if and only if the pre-Schwarzian derivative

$$T_f(z) = \frac{f''(z)}{f'(z)}$$

is hyperbolically bounded, that is, that the norm

$$\| f \| = \sup_{|z|<1} (1 - |z|^2)|T_f(z)|$$

is finite. This quantity can be regarded as the Bloch norm of function $(\log f(z))'$. Both of the pre-Schwarzian derivative and the norm $\| f \|$ play a central role in the theory of Teichmüller spaces, inner radius of univalence, quasiconformal extension, etc. If $f(z) \in A$ is univalent in \mathbb{U}, then $\| f \| < 6$ and the bound 6 is sharp for the
Koebe function \(k(z) = z/(1-z)^2 \).
Conversely, if \(f(z) \in \mathcal{A} \) satisfies \(\| f \| < 1 \), then \(f(z) \) is univalent in \(U \) by Becker [1]. Also, it is known that \(\| f \| < 4 \) for \(f(z) \in \mathcal{K} \). For \(f(z) \in \mathcal{A} \), the Alexander transformation \(J[f](z) \) is defined by
\[
J[f](z) = \int_0^z \frac{f(t)}{t} dt.
\]
If \(f(z) \in \mathcal{S} \), then \(f(z) \) is locally univalent and \(\| J[f] \| < 6 \) by Kim, Choi and Sugawa [6]. Also, Yamashita [12] proved that if \(f(z) \in \mathcal{S}^* \), then \(\| J[f] \| < 6 - 4\alpha \) and \(\| J[f] \| < 4(1 - \alpha) \). By means of (1.5) and (1.8), we see that
\[
\{ f; z \} = (T_f(z))' - \frac{1}{2}(T_f(z))^2.
\]
The Alexander transformation \(J[f](z) \) of \(f(z) \in \mathcal{A} \) is also called as Biernacki’s integral. It is known that \(J[f](\mathcal{S}^*) = \mathcal{K} \) while \(J[f](\mathcal{S}) \) is not in \(\mathcal{S} \). In this paper, we would like to extend the type of functions \(f(z) \) to be considered by introducing a parameter \(\alpha \) and setting an integral of the form
\[
F_\alpha(z) = \int_0^z \left(\frac{tf'(t)}{f(t)} \right)^\alpha dt.
\]
For more details on this integral, we refer to Goodman [4]. The following lemma due to Fukui and Sakaguchi [3] is a generalization of Jack’s lemma by Jack [5] (also by Miller and Mocanu [9]).

Lemma 1.1 Let \(w(z) = a_p z^p + a_{p+1} z^{p+1} + \cdots \) be analytic in \(U \) with \(a_p \neq 0 \) and \(p \geq 1 \). If the maximum value of \(|w(z)| \) on the circle \(|z| = r < 1 \) is attained at \(z = z_0 \), then \(z_0 w'(z_0)/w(z_0) \) is real and
\[
\frac{z_0 w'(z_0)}{w(z_0)} \geq p.
\]

2. Univalency of some operators

We first derive

Theorem 2.1 Let \(f(z) \) be analytic in \(U \) with \(f(0) = 0 \). If \(f(z) \) satisfies
\[
|f(z)| \leq \frac{M}{1-|z|^2} \quad (z \in U)
\]
for a bounded positive constant M, then

\begin{equation}
|f(z)| \leq \frac{3\sqrt{3}M|z|}{2} \leq \frac{3\sqrt{3}|z|}{2(1-|z|^2)} \quad (|z| \leq \frac{\sqrt{3}}{3})
\end{equation}

and

\begin{equation}
|f(z)| \leq \frac{\sqrt{3}M|z|}{1-|z|^2} \leq \frac{3\sqrt{3}M|z|}{2(1-|z|^2)} \quad \left(\frac{\sqrt{3}}{3} \leq |z| < 1\right).
\end{equation}

Proof For the case of $|z| \leq \sqrt{3}/3$, we have

\begin{equation}
\frac{1}{1-|z|^2} \leq \frac{3}{2}.
\end{equation}

Thus, the inequality (2.1) gives

\begin{equation}
|f(z)| \leq \frac{3M}{2} \quad (|z| \leq \frac{\sqrt{3}}{3}).
\end{equation}

Therefore, applying the Schwarz lemma for $f(z)$ with $|z| \leq \sqrt{3}/3$, we obtain that

\begin{equation}
|f(z)| \leq \sqrt{3}|z| \frac{3M}{2} \quad (|z| \leq \frac{\sqrt{3}}{3})
\end{equation}

which shows (2.2). If $\sqrt{3}/3 \leq |z| < 1$, we know that $\sqrt{3}|z| \geq 1$. This gives us that

\begin{equation}
|f(z)| \leq \frac{\sqrt{3}M|z|}{1-|z|^2} \quad \left(\frac{\sqrt{3}}{3} \leq |z| < 1\right)
\end{equation}

which implies the inequality (2.3).

Corollary 2.1 If $f(z)$ is analytic in U with $f(0) = 0$, then there exists some $z \in U$ such that

\begin{equation}
|f(z)| \leq \frac{M}{1-|z|^2}
\end{equation}

satisfies

\begin{equation}
|f(z)| \leq \frac{3\sqrt{3}M|z|}{2(1-|z|^2)}
\end{equation}

for a positive constant M.

124
Remark 2.1 Noting that \(3\sqrt{3}/2 = 2.598\ldots\), we conjecture that \(3\sqrt{3}/2\) in Corollary 2.1 can be replaced by 1.

Next, we derive

Theorem 2.2 For a function \(f(z) \in S\), we assume that the function \((zf'(z)/f(z))^\alpha\) is analytic in \(U\) for \(\alpha > 0\) with

\[
(2.10) \quad \left. \left(\frac{zf'(z)}{f(z)} \right)^\alpha \right|_{z=0} = 1.
\]

Then, the integral transformation \(F_\alpha(z)\) defined by (1.12) is univalent in \(U\) for

\[
(2.11) \quad 0 < \alpha \leq \alpha_0 = \frac{2\sqrt{5} - 4}{15\sqrt{3}} = 0.0181725\ldots.
\]

Proof Note that

\[
(2.12) \quad F_\alpha'(z) = \left(\frac{zf'(z)}{f(z)} \right)^\alpha \quad (z \in U)
\]

by \(F_\alpha(z)\) in (1.12). This gives us that

\[
(2.13) \quad \frac{F_\alpha''(z)}{F_\alpha'(z)} = \frac{\alpha}{z} \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right).
\]

If we put

\[
(2.14) \quad h(z) = 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \quad (z \in U),
\]

we have that \(h(0) = 0\) and

\[
(2.15) \quad |h(z)| \leq \left| 1 + \frac{zf''(z)}{f'(z)} \right| + \left| \frac{zf'(z)}{f(z)} \right|.
\]

On the other hand, it is well-known that if \(f(z) \in S\), then

\[
(2.16) \quad \left| \frac{zf''(z)}{f'(z)} - \frac{2|z|^2}{1 - |z|^2} \right| \leq \frac{4|z|}{1 - |z|^2} \quad (z \in U)
\]

that is,

\[
(2.17) \quad \left| 1 + \frac{zf''(z)}{f'(z)} - \frac{1 + |z|^2}{1 - |z|^2} \right| \leq \frac{4|z|}{1 - |z|^2} \quad (z \in U).
\]
This gives that
\[(2.18) \quad \left| 1 + \frac{zf''(z)}{f'(z)} \right| \leq \frac{4|z|}{1 - |z|^2} + \frac{1 + |z|^2}{1 - |z|^2} < \frac{6}{1 - |z|^2} \quad (z \in \mathbb{U}).\]

Further, we know that
\[(2.19) \quad \left| \frac{zf'(z)}{f(z)} \right| \leq \frac{1 + |z|}{1 - |z|} = \frac{(1 + |z|)^2}{1 - |z|^2} < \frac{4}{1 - |z|^2} \quad (z \in \mathbb{U}).\]

Therefore, the inequality (2.15) implies that
\[(2.20) \quad |h(z)| < \frac{10}{1 - |z|^2} \quad (z \in \mathbb{U}).\]

Considering $M = 10$ in (2.1) of Theorem 2.1, we say that
\[(2.21) \quad |h(z)| < \frac{15\sqrt{3}|z|}{1 - |z|^2} \quad (z \in \mathbb{U}).\]

Therefore, we have that
\[(2.22) \quad \left| \frac{F''_{\alpha}(z)}{F'_{\alpha}(z)} \right| \leq \frac{\alpha}{|z|} |h(z)| < \frac{15\sqrt{3}\alpha}{1 - |z|^2} \quad (z \in \mathbb{U}).\]

By using of the result in [11], we know that there exists a point $z \in \mathbb{U}$ that if
\[(2.23) \quad |h(z)| < \frac{1}{1 - |z|^2} \quad (z \in \mathbb{U}),\]

then
\[(2.24) \quad |h'(z)| < \frac{4}{(1 - |z|^2)^2} \quad (z \in \mathbb{U}).\]

It follows from the above that
\[(2.25) \quad \left| \left(\frac{F''_{\alpha}(z)}{F'_{\alpha}(z)} \right)' \right| < \frac{60\sqrt{3}\alpha}{(1 - |z|^2)^2} \quad (z \in \mathbb{U}).\]

Therefore, we have that
\[(2.26) \quad |\{F_{\alpha}(z); z\}| \leq \left| \left(\frac{F''_{\alpha}(z)}{F'_{\alpha}(z)} \right)' \right| + \frac{1}{2} \left(\frac{F''_{\alpha}(z)}{F'_{\alpha}(z)} \right)^2 \]

126
\[\leq \frac{60\sqrt{3}\alpha}{(1-|z|^2)^2} + \frac{1}{2} \left(\frac{15\sqrt{3}\alpha}{1-|z|^2} \right)^2 = \frac{15(45\alpha + 8\sqrt{3})\alpha}{2(1-|z|^2)^2} \quad (z \in \mathbb{U}). \]

Applying the Nehari’s condition (1.7) for \(F_{\alpha}(z) \), we need that
\[(2.27) \quad \frac{15(45\alpha + 8\sqrt{3})\alpha}{2} \leq 2, \]
that is, that
\[(2.28) \quad 0 < \alpha \leq \alpha_0 = \frac{2\sqrt{5} - 4}{15\sqrt{3}} = 0.0181725 \ldots. \]
This completes the proof of the theorem.

Next, we recall here a result by Chichra and Singh [2] that if
\[(2.29) \quad z + z^2\log \frac{g(z)}{z} \in S^*, \]
then there exist some \(t \) (\(0 \leq t \leq 1 \)) and \(\alpha \) (\(0 \leq \alpha \leq 1/2 \)) such that
\[(2.30) \quad tz + (1-t) \int_0^z \left(\frac{tg'(t)}{g(t)} \right)^\alpha dt \in S^*. \]
Letting
\[(2.31) \quad \frac{g(z)}{z} = \frac{zf'(z)}{f(z)} \]
for \(f(z) \in A \), Theorem 2.2 becomes

Theorem 2.3 Assume that \(g(z) \in A \) satisfies
\[(2.32) \quad z\exp \left(\int_0^z \frac{g(t)}{t} - \frac{1}{t} dt \right) \in S, \]
the function \((g(z)/z)^\alpha \) is analytic in \(\mathbb{U} \) with \(0 < \alpha < 1 \) and
\[(2.33) \quad \left. \left(\frac{g(z)}{z} \right)^\alpha \right|_{z=0} = 1. \]
If \(0 < \alpha \leq \alpha_0 = (2\sqrt{5} - 4)/15\sqrt{3} = 0.0181725 \ldots \), then the integration \(\int_0^z (g(t)/t)^\alpha dt \) is univalent in \(\mathbb{U} \).
By means of the result due to Krzyż [7], we know that \(g(z) \in S \) is not implies that \(\int_0^z (g(t)/t) \, dt \in S \). The counterexample for the above is given by

\[
(2.34) \quad g(z) = \frac{z}{(1 - iz)^{1-i}}.
\]

On the other hand, Merkes and Wright [8] showed that if \(g(z) \in S^* \), then

\[
(2.35) \quad \int_0^z \left(\frac{g(t)}{t} \right) ^\alpha \, dt \in C
\]

for \(-1/2 \leq \alpha \leq 3/2\). Theorem 2.3 says that if

\[
(2.36) \quad z \exp \left(\int_0^z \frac{g(t)}{t} - \frac{1}{t} \, dt \right) \in S,
\]

then

\[
(2.37) \quad \int_0^z \left(\frac{g(t)}{t} \right) ^\alpha \, dt \in S
\]

for \(0 < \alpha \leq \alpha_0 = (2\sqrt{5} - 4)/15\sqrt{3} \).

Corollary 2.2 If \(g(z) \in A \) satisfies

\[
(2.38) \quad \text{Re} \left(\frac{g(z)}{z} \right) > 0 \quad (z \in \mathbb{U}),
\]

then

\[
(2.39) \quad \int_0^z \left(\frac{g(t)}{t} \right) ^\alpha \, dt
\]

is univalent in \(\mathbb{U} \), where \(0 < \alpha \leq \alpha_0 = (2\sqrt{5} - 4)/15\sqrt{3} \).

3. An application of Schwarzian derivative

Next, we would like to consider an application of Schwarzian derivative concerning with the subordinations. Let \(f(z) \in A \) and \(g(z) \in A \). Then the function \(f(z) \) is said to subordinate to \(g(z) \) if there exists a function \(w(z) \) analytic in \(\mathbb{U} \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) such that \(f(z) = g(w(z)) \) for \(z \in \mathbb{U} \). We write that

\[
(3.1) \quad f(z) \prec g(z) \quad (z \in \mathbb{U})
\]
if \(f(z) \) subordinates to \(g(z) \) in \(U \). Also, if \(g(z) \) is univalent in \(U \), then \(f(z) \prec g(z) \) is equivalent to \(f(0) = g(0) \) and \(f(U) \subset g(U) \) (see Miller and Mocanu [9]).

Now, we derive

Theorem 3.1 Let \(f(z) \in \mathcal{A} \) satisfy

\[
|z^2 \{ f ; z \} | < \alpha (1 - \beta) \quad (z \in \mathbb{U}),
\]

where \(0 < \alpha < 1 \) and

\[
\left| \frac{zh''(z)}{h'(z)} - \frac{2zh'(z)}{h(z) + 1} \right| \leq \beta \quad (z \in \mathbb{U})
\]

with

\[
h(z) = (f'(z))^{1/\alpha} \neq \pm 1.
\]

Then we have that

\[
f'(z) \prec \left(\frac{1 + z}{1 - z} \right)^\alpha \quad (z \in \mathbb{U})
\]

or

\[
| \arg f'(z) | < \frac{\pi}{2\alpha} \quad (z \in \mathbb{U}).
\]

Therefore, \(f(z) \) is univalent in \(\mathbb{U} \).

Proof For \(h(z) = (f'(z))^{1/\alpha} \) \((0 < \alpha < 1) \), we define the function \(w(z) \) by

\[
w(z) = \frac{h(z) - 1}{h(z) + 1} = \frac{c_n}{2} z + \cdots
\]

with \(w(0) = 0 \). This implies that

\[
f'(z) = \left(\frac{1 + w(z)}{1 - w(z)} \right)^\alpha.
\]

It follows from (3.8) that

\[
f''(z) = \frac{2\alpha w'(z)}{1 - w(z)^2} \left(\frac{1 + w(z)}{1 - w(z)} \right)^\alpha = \frac{2\alpha w'(z)}{1 - w(z)^2} f'(z),
\]
that is, that

\begin{equation}
\frac{f''(z)}{f'(z)} = \frac{2\alpha w'(z)}{1 - w(z)^2}.
\end{equation}

Thus, we obtain that

\begin{equation}
\left(\frac{f''(z)}{f'(z)} \right)^2 = \left(\frac{zf''(z)}{f'(z)} \right)^2 \frac{1}{z^2} = \left(\frac{2\alpha z w'(z)}{1 - w(z)^2} \right)^2 \frac{1}{z^2}.
\end{equation}

We suppose that there exists a point \(z_0 \in \mathbb{U} \) such that \(|w(z)| < 1 (|z| < |z_0| < 1)\) and \(|w(z_0)| = 1\). Then Lemma 1.1 gives us that

\begin{equation}
\frac{z_0 w'(z_0)}{w(z_0)} = k \geq 1.
\end{equation}

Further, by the result due to Miller and Mocanu [9], we have that

\begin{equation}
\Re \left(\frac{z_0 w''(z_0)}{w'(z_0)} \right) \geq 0.
\end{equation}

Therefore, we have that

\begin{equation}
\left(\frac{f''(z)}{f'(z)} \right)^2 = \left(\frac{2\alpha k w(z_0)}{1 - w(z_0)^2} \right)^2 \frac{1}{z_0^2} = \left(\frac{i\alpha k}{\sin \theta} \right)^2 \frac{1}{z_0^2} = - \left(\frac{\alpha k}{\sin \theta} \right)^2 \frac{1}{z_0^2},
\end{equation}

where \(w(z_0) = e^{i\theta} \) (\(0 \leq \theta < 2\pi \)).

Also, we see that

\begin{equation}
\left. \left(\frac{f''(z)}{f'(z)} \right)' \right|_{z=z_0} = \left. \left(\frac{2\alpha w'(z)}{1 - w(z)^2} \right)' \right|_{z=z_0}
\end{equation}

\begin{align*}
&= 2\alpha \left(\frac{w''(z_0)}{1 - w(z_0)^2} \right) + \left. \frac{4\alpha w(z)(w'(z))^2}{(1 - w(z)^2)^2} \right|_{z=z_0} \\
&= ik\alpha \left(\frac{z_0 w''(z_0)}{w'(z_0)} \right) \frac{1}{z_0} + \left(\frac{ik}{\sin \theta} \right)^2 \frac{\alpha w(z_0)}{z_0^2} \\
&= \frac{k\alpha}{\sin \theta} \left\{ i \left(\frac{z_0 w''(z_0)}{w'(z_0)} \right) - \frac{kw(z_0)}{\sin \theta} \right\} \frac{1}{z_0^2}.
\end{align*}
Consequently, we obtain that

$$z_0^2 \{f; z\} = \frac{k\alpha}{\sin \theta} \left\{ \frac{1}{2i} \left(\frac{z_0 w''(z_0)}{w'(z_0)} \right) - \frac{kw(z_0)}{\sin \theta} + \frac{\alpha k}{2\sin \theta} \right\}$$

and so

$$|z_0^2 \{f; z_0\}| \geq \frac{\alpha}{2} \left| \frac{k}{\sin \theta} \frac{\alpha - 2\cos \theta - 2i\sin \theta}{w'(z_0)} \right| + 2 \left| \frac{z_0 w''(z_0)}{w'(z_0)} \right|.$$

If we define a function $p(x)$ by

$$p(x) = \frac{x^2 - 4\alpha x + 4}{1 - x^2} \quad (x = \cos \theta),$$

then

$$p'(x) = \frac{-2(2x - \alpha)(\alpha x - 2)}{(1 - x^2)^2}$$

gives that $p(x)$ takes its minimum value at $x = \alpha/2 < 1/2$, because $0 < \alpha < 1$ and $-1 \leq x \leq 1$. This shows us that $p(x) \geq 4$ and so

$$|z_0^2 \{f; z_0\}| \geq \frac{\alpha}{2} \frac{\alpha - 2\cos \theta + 4}{1 - \cos^2 \theta} - 2 \left| \frac{z_0 w''(z_0)}{w'(z_0)} \right| \geq \alpha (1 - \beta).$$

This contradicts the condition (3.2) of the theorem. Therefore, there is no $z_0 \in U$ such that $|w(z_0)| = 1$. This implies that there exists $w(z)$ such that

$$f'(z) = \left(\frac{1 + w(z)}{1 - w(z)} \right)^\alpha \quad (z \in U)$$

with $w(0) = 0$ and $|w(z)| < 1 (z \in U)$. Consequently, we prove the subordination (3.5).

Further, since

$$|\arg \left(\frac{1 + z}{1 - z} \right) | < \frac{\pi}{2} \quad (z \in U),$$
we obtain (3.6) for $\arg f'(z)$.

Making $\alpha = 1/2$ in Theorem 3.1, we derive

Corollary 3.1 Let $f(z) \in A$ satisfy

$$|z^2\{f; z\}| < \frac{1-\beta}{2} \quad (z \in \mathbb{U})$$

with

$$\frac{zh''(z)}{h'(z)} - \frac{2zh'(z)}{h(z) + 1} \leq \beta \quad (z \in \mathbb{U})$$

and $h(z) = \sqrt{f'(z)} \neq \pm 1$. Then we have

$$f'(z) < \sqrt{\frac{1+z}{1-z}} \quad (z \in \mathbb{U})$$

or

$$|\arg f'(z)| < \frac{\pi}{4} \quad (z \in \mathbb{U}).$$

Acknowledgements Professor Mamoru Nunokawa has got the decoration of [Zuihouchujishou] by Japanese Government on May 12, 2017. He would like to express his deep thanks for Prof. Owa, Prof. Saitoh and Prof. Sokól to support his research for long time.

References

Shigeyoshi Owa
Department of Mathematics
Yamato University
Katayama 2-5-1, Suita, Osaka 564-0082, Japan
e-mail: shige21@ican.zaq.ne.jp

Hitoshi Saitoh
Department of Mathematics
Gunma National College of Technology
Toriba, Maebashi, Gunma 371-8530, Japan
e-mail: sp822457@db4.so-net.ne.jp

Janusza Sokół
University of Rzeszów
Faculty of Mathematics and Natural Sciences
UL. Prof. Pigonia 1, 35-310 Rzeszów, Poland
e-mail: jsokol@ur.edu.pl

Mamoru Nunokawa
Honorary Professor
University of Gunma
Hoshikuki-Cho 798-8, Chuou-Ward, Chiba 260-0808, Japan
e-mail: mamoru_nuno@doctor.nifty.jp