SECOND HANKEL DETERMINANT PROBLEM FOR SOME ANALYTIC FUNCTION CLASSES WITH CONNECTED K-FIBONACCI NUMBERS

H. Özlem Günü̇, J. Sokól, S. İlhan

Abstract. In this paper, we determine upper bound for the second Hankel determinant in some classes of analytic functions in the open unit disc connected with k-Fibonacci numbers $F_{k,n}$ ($k > 0$). For this purpose we apply properties of k-Fibonacci numbers to consider second Hankel determinant problem for the class SL^k and KSL^k. The results presented in this paper have been shown to generalize and improve some recent work of Sokól et al. [18].

2010 Mathematics Subject Classification: Primary 30C45, secondary 30C80.

Keywords: univalent functions, convex functions, starlike functions, subordination, k-Fibonacci numbers.

1. Introduction

Let $D = \{ z : |z| < 1 \}$ be the unit disc in the complex plane. The class of all analytic functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ in the open unit disc D with normalization $f(0) = 0$, $f'(0) = 1$ is denoted by \mathcal{A} and the class $\mathcal{S} \subset \mathcal{A}$ is the class which consists of univalent functions in D. We say that f is subordinate to F in D, written as $f \prec F$, if and only if $f(z) = F(\omega(z))$ for some analytic function ω, $|\omega(z)| \leq |z|$, $z \in D$.

Recently, N. Yılmaz Özgür and J. Sokól [12] introduced the class SL^k of starlike functions connected with k–Fibonacci numbers as the set of functions $f \in \mathcal{A}$ which is described in the following definition.

Definition 1. Let k be any positive real number. The function $f \in \mathcal{A}$ belongs to the class SL^k if it satisfies the condition that

$$\frac{zf'(z)}{f(z)} \prec \tilde{p}_k(z), \quad z \in D, \quad (1)$$

where

$$\tilde{p}_k(z) = \frac{1 + \tau_k^2 z^2}{1 - k \tau_k z - \tau_k^2 z^2}, \quad \tau_k = \frac{k - \sqrt{k^2 + 4}}{2}, \quad z \in D. \quad (2)$$
Now we define the class KSL^k as follows:

Definition 2. Let k be any positive real number. The function $f \in A$ belongs to the class KSL^k if it satisfies the condition that

$$1 + \frac{zf''(z)}{f'(z)} < \tilde{p}_k(z), \quad z \in \mathbb{D},$$

where the function \tilde{p}_k is defined in (2).

For $k = 1$, the classes SL^k and KSL^k become the classes SL and KSL of shell-like functions defined in [15], see also [16].

It was proved in [12] that functions in the class SL^k are univalent in \mathbb{D}. Moreover, the class SL^k is a subclass of the class of starlike functions S^*, even more, starlike of order $k(k^2 + 4)^{-1/2}/2$. The name attributed to the class SL^k is motivated by the shape of the curve

$$C = \{ \tilde{p}_k(e^{it}) : t \in [0, 2\pi) \setminus \{\pi\} \}.$$

The curve C has a shell-like shape and it is symmetric with respect to the real axis. Its graphic shape, for $k = 1$, is given below in Fig.1.

![Fig. 1. $\tilde{p}_1(e^{it})$](image)

For $k \leq 2$, note that we have

$$\tilde{p}_k\left(e^{\pm i \arccos(k^2/4)}\right) = k(k^2 + 4)^{-1/2},$$

and so the curve C intersects itself on the real axis at the point $w_1 = k(k^2 + 4)^{-1/2}$. Thus C has a loop intersecting the real axis also at the point $w_2 = (k^2 + 4)/(2k)$.

162
For $k > 2$, the curve C has no loops and it is like a conchoid, see for details [12].
Moreover, the coefficients of \tilde{p}_k are connected with k-Fibonacci numbers.

For any positive real number k, the k-Fibonacci number sequence $\{F_{k,n}\}_{n=0}^{\infty}$ is defined recursively by
\begin{equation}
F_{k,0} = 0, \quad F_{k,1} = 1 \quad \text{and} \quad F_{k,n+1} = kF_{k,n} + F_{k,n-1} \quad \text{for} \quad n \geq 1.
\end{equation}

When $k = 1$, we obtain the well-known Fibonacci numbers F_n. It is known that the n^{th} k-Fibonacci number is given by
\begin{equation}
F_{k,n} = \frac{(k - \tau_k)^n - \tau_k^n}{\sqrt{k^2 + 4}},
\end{equation}
where $\tau_k = (k - \sqrt{k^2 + 4})/2$. If $\tilde{p}_k(z) = 1 + \sum_{n=1}^{\infty} \tilde{p}_{k,n} z^n$, then we have
\begin{equation}
\tilde{p}_{k,n} = (F_{k,n-1} + F_{k,n+1}) \tau_k^n, \quad n = 1, 2, 3, \ldots,
\end{equation}
see also [12].

Lemma 1. [12] If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ belongs to the class $S\mathcal{L}^k$, then we have
\begin{equation}
|a_n| \leq |\tau_k|^{n-1} F_{k,n},
\end{equation}
where $\tau_k = (k - \sqrt{k^2 + 4})/2$. Equality holds in (7) for the function
\begin{align}
g_k(z) &= \frac{z}{1 - k\tau_k z - \tau_k^2 z^2} \\
&= \sum_{n=1}^{\infty} \tau_k^{n-1} F_{k,n} z^n \\
&= z + \frac{(k - \sqrt{k^2 + 4})k}{2} z^2 + (k^2 + 1) \left(\frac{(k - \sqrt{k^2 + 4})k}{2} + 1 \right) z^3 + \cdots.
\end{align}

Let $P(\beta), \ 0 \leq \beta < 1$, denote the class of analytic functions p in \mathbb{D} with $p(0) = 1$ and $\text{Re}\{p(z)\} > \beta$. Especially, we use $P(0) = P$ as $\beta = 0$.

In [12], they proved the following theorem:

Theorem 2. Let $\{F_{k,n}\}$ be the sequence of k-Fibonacci numbers defined in . If
\begin{equation}
\tilde{p}_k(z) = \frac{1 + \tau_k^2 z^2}{1 - k\tau_k z - \tau_k^2 z^2} = 1 + \sum_{n=1}^{\infty} p_n z^n,
\end{equation}
where $\tau_k = \frac{k - \sqrt{k^2 + 4}}{2}$, $z \in \mathbb{D}$, then we have
\begin{equation}
p_n = (F_{k,n-1} + F_{k,n+1}) \tau_k^n, \quad n = 1, 2, 3, \ldots
\end{equation}
We will use the following lemma for proving our main result.

Lemma 3. [13] Let $p \in \mathcal{P}$ with $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$, then

$$|c_n| \leq 2, \quad \text{for} \quad n \geq 1. \quad (11)$$

If $|c_1| = 2$, then $p(z) \equiv p_1(z) \equiv (1 + xz)/(1 - xz)$ with $x = \frac{c_1}{2}$. Conversely, if $p(z) \equiv p_1(z)$ for some $|x| = 1$, then $c_1 = 2x$. Furthermore, we have

$$|c_2 - \frac{c_1^2}{2}| \leq 2 - \frac{|c_1|^2}{2}. \quad (12)$$

If $|c_1| < 2$, and $|c_2 - \frac{c_1^2}{2}| = 2 - \frac{|c_1|^2}{2}$, then $p(z) \equiv p_2(z)$, where

$$p_2(z) = \frac{1 + \bar{x}wz + z(wz + x)}{1 + \bar{x}wz - z(wz + x)},$$

and $x = \frac{c_1}{2}$, $w = \frac{2c_2 - c_1^2}{4 - |c_1|^2}$ and $|c_2 - \frac{c_1^2}{2}| = 2 - \frac{|c_1|^2}{2}$.

Lemma 4. ([9]) Let $p \in \mathcal{P}$ with coefficients c_n as above, then

$$|c_3 - 2c_1 c_2 + c_1^3| \leq 2. \quad (13)$$

In 1976, Noonan and Thomas [10] stated the s^{th} Hankel determinant for $s \geq 1$ and $q \geq 1$ as

$$H_s(q) = \begin{vmatrix} a_q & a_{q+1} & \cdots & a_{q+s-1} \\ a_{q+1} & a_{q+2} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{q+s-1} & \cdots & \cdots & a_{q+2(s-1)} \end{vmatrix} \quad (14)$$

where $a_1 = 1$.

This determinant has also been considered by several authors. For example, Noor [11] determined the rate of growth of $H_s(q)$ as $q \to \infty$ for functions f in S with bounded boundary. Ehrenborg in [3] studied the Hankel determinant of exponential polynomials. The Hankel transform of an integer sequence and some of its properties were discussed by Layman in [8]. Also, several authors considered the case $s = 2$. Especially, $H_2(1) = a_3 - a_2^2$ is known as Fekete-Szegő functional and this functional is generalized to $a_3 - \mu a_2^2$ where μ is some real number [4]. Estimating for an upper bound of $|H_2(1)|$ is known as the Fekete-Szegő problem. Raina and Sokól considered Fekete-Szegő problem for the class \mathcal{SL} in [14] and for the class \mathcal{SL}^k in [17]. In 1969, Keogh and Merkes [7] solved this problem for the classes S^* and C.

164
The second Hankel determinant is \(H_2(2) = a_2a_4 - a_3^2 \). Janteng [5] found the sharp upper bound for \(|H_2(2)| \) for univalent functions whose derivative has positive real part. In [6] Janteng et al. obtained the bounds for \(|H_2(2)| \) for the classes \(S^* \) and \(\mathcal{L} \). Also, Sokół et al. considered second Hankel determinant problem for the classes \(\mathcal{S}\mathcal{L} \) and \(\mathcal{K}\mathcal{S}\mathcal{L} \) in [18].

2. THE SECOND HANKEL DETERMINANT PROBLEM

Let we prove the coefficient bound of the function in the class \(\mathcal{K}\mathcal{S}\mathcal{L}^k \) as follows:

Theorem 5. If \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) belongs to the class \(\mathcal{K}\mathcal{S}\mathcal{L}^k \), then we have

\[
|a_n| \leq \frac{|\tau_k|^{n-1} F_{k,n}}{n},
\]

where \(\tau_k = (k - \sqrt{k^2 + 4})/2 \). Equality holds in (7) for the function

\[
f_k(z) = \frac{1}{1 + \tau_k^2} \log \frac{1 + z}{1 - \tau_k^2 z}.
\]

Proof. A function \(f \) is in the class \(\mathcal{K}\mathcal{S}\mathcal{L}^k \) if and only if the function

\[
g(z) = zf'(z)
\]

is in the class \(\mathcal{S}\mathcal{L}^k \). The relations (17) follows (3). Therefore, if

\[
zf'(z) = z + \sum_{n=2}^{\infty} na_n z^n \quad (z \in \mathbb{D})
\]

belongs to the class \(\mathcal{S}\mathcal{L}^k \), then from Lemma (1), we can write \(|na_n| \leq |\tau_k|^{n-1} F_{k,n} \), which implies (15). The equation (16) is such that \(zf_k(z) = g_k(z) \) where the function \(g_k \) is given in (8), and so from (17), it follows that \(f_k \in \mathcal{K}\mathcal{S}\mathcal{L}^k \). Also, by (8) we have

\[
f_k(z) = z + \sum_{n=2}^{\infty} \frac{|\tau_k|^{n-1} F_{k,n}}{n} z^n \quad (z \in \mathbb{D}).
\]

Consequently, the result (7) is sharp.

In [17], Sokol et. al proved the following coefficient bounds:
Theorem 6. If \(p(z) = 1 + p_1z + p_2z^2 + \cdots \) and

\[
p(z) \prec \tilde{p}_k(z) = \frac{1 + \tau_k^2z^2}{1 - k\tau_kz - \tau_k^2z^2}, \quad \tau_k = \frac{k - \sqrt{k^2 + 4}}{2}, \quad z \in \mathbb{D},
\]

then we have

\[
|p_1| \leq \frac{\sqrt{k^2 + 4} - k}{2} k
\]

and

\[
|p_2| \leq (k^2 + 2) \left\{ \frac{(k - \sqrt{k^2 + 4})k}{2} + 1 \right\}.
\]

The above estimations are sharp.

Now, our first main result (Theorem 7 below) gives an upper bound for the coefficient \(p_3 \).

Theorem 7. If \(p(z) = 1 + p_1z + p_2z^2 + \cdots \) and

\[
p(z) \prec \tilde{p}_k(z) = \frac{1 + \tau_k^2z^2}{1 - k\tau_kz - \tau_k^2z^2}, \quad \tau_k = \frac{k - \sqrt{k^2 + 4}}{2}, \quad z \in \mathbb{D},
\]

then we have

\[
|p_3| \leq (k^3 + 3k) \left\{ \frac{\sqrt{k^2 + 4} - k}{2} \right\}^3.
\]

The above estimation is sharp.

Proof. If \(p \prec \tilde{p}_k \), then there exists an analytic function \(w \) such that \(|w(z)| \leq |z| \) in \(\mathbb{D} \) and \(p(z) = \tilde{p}_k(w(z)) \). Therefore, the function

\[
h(z) = \frac{1 + w(z)}{1 - w(z)} = 1 + c_1z + c_2z + \cdots \quad (z \in \mathbb{D})
\]

is in the class \(\mathcal{P} \). It follows that

\[
w(z) = \frac{c_1z}{2} + \left(c_2 - \frac{c_1^2}{2} \right) \frac{z^2}{2} + \cdots
\]
and

\[\tilde{p}_k(w(z)) = 1 + \tilde{p}_{k,1} \left(\frac{c_1 z}{2} + \left(c_2 - \frac{c_1^2}{2} \right) \frac{z^2}{2} + \cdots \right) + \tilde{p}_{k,2} \left(\frac{c_1 z}{2} + \left(c_2 - \frac{c_1^2}{2} \right) \frac{z^2}{2} + \cdots \right)^2 \]

\[+ \tilde{p}_{k,3} \left(\frac{c_1 z}{2} + \left(c_2 - \frac{c_1^2}{2} \right) \frac{z^2}{2} + \left(c_3 - c_1 c_2 + \frac{c_1^3}{4} \right) \frac{z^3}{2} + \cdots \right)^3 \]

\[= 1 + \frac{\tilde{p}_{k,1} c_1}{2} z + \left\{ \frac{1}{2} \left(c_2 - \frac{c_1^2}{2} \right) \tilde{p}_{k,1} + \frac{1}{4} c_1^2 \tilde{p}_{k,2} \right\} z^2 \]

\[+ \left\{ \frac{1}{2} \left(c_3 - c_1 c_2 + \frac{c_1^3}{4} \right) \tilde{p}_{k,1} + \frac{1}{2} c_1 \left(c_2 - \frac{c_1^2}{2} \right) \tilde{p}_{k,2} + \frac{c_1^3}{8} \tilde{p}_{k,3} \right\} z^3 + \cdots \]

\[= p(z). \quad (24) \]

From (6), we find the coefficients \(\tilde{p}_{k,n} \) of the function \(\tilde{p}_k \) given by

\[\tilde{p}_{k,n} = (F_{k,n-1} + F_{k,n+1}) \tau_k^n. \]

This shows the relevant connection \(\tilde{p}_k \) with the sequence of \(k \)-Fibonacci numbers

\[\tilde{p}_k(z) = 1 + \sum_{n=1}^{\infty} \tilde{p}_{k,n} z^n \]

\[= 1 + (F_{k,0} + F_{k,2}) \tau_k z + (F_{k,1} + F_{k,3}) \tau_k^2 z^2 + \cdots \]

\[= 1 + k \tau_k z + \left(k^2 + 2 \right) \tau_k^2 z^2 + (k^3 + 3k) \tau_k^3 z^3 + \cdots. \quad (25) \]

If \(p(z) = 1 + p_1 z + p_2 z^2 + \cdots \), then by (24) and (25), we have

\[p_1 = \frac{k \tau_k c_1}{2}, \quad (26) \]

\[p_2 = \frac{k \tau_k}{2} \left(c_2 - \frac{c_1^2}{2} \right) \tau_k^2 + \frac{(k^2 + 2)}{4} \tau_k^2 \]

\[\tau_k^2 \quad (27) \]

and

\[p_3 = \frac{k \tau_k}{2} \left(c_3 - c_1 c_2 + \frac{c_1^3}{4} \right) + \frac{(k^2 + 2)}{2} c_1 \left(c_2 - \frac{c_1^2}{2} \right) \tau_k^2 + \frac{(k^3 + 3k)}{8} \tau_k^3 c_1. \quad (28) \]

We know that

\[\tau_k (k - \tau_k) = -1, \quad (29) \]
Therefore, we have

\[\tau_k = \frac{k - \sqrt{k^2 + 4}}{2}. \]

Now taking absolute value of (28) and using (29), we can write

\[|p_3| = \frac{k \tau_k}{2} c_2 + \frac{c_1^2}{4} \left(c_3 - c_1c_2 + c_1^2 \right) \frac{(k^2 + 2)}{2} c_1 \left(c_2 - \frac{c_1^2}{2} \right) \tau_k^2 + \frac{(k^3 + 3k)}{8} c_1^2 \tau_k^2 \]

\[= \frac{k \tau_k}{2} c_2 + \frac{c_1^2}{4} \left(c_3 - c_1c_2 + c_1^2 \right) \frac{(k^2 + 2)}{2} c_1 \left(c_2 - \frac{c_1^2}{2} \right) (k \tau_k + 1) + \frac{(k^3 + 3k)}{8} c_1^2 ((k^2 + 1) \tau_k + k) \]

\[= \frac{1}{2} \left(c_3 - c_1c_2 + c_1^2 \right) k - \frac{(k^5 + 2k^3 - 4k)}{4} c_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{(k^3 + 4k^3 + 2k)}{4} c_1 c_2 \tau_k \]

\[+ \left\{ \frac{k^2 + 2}{2} c_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{(k^3 + 3k)}{8} c_1^2 \right\} \]

From (2) and (5), we find that

\[\forall n \in \mathbb{N}, \tau_k = \frac{k^n}{F_{k,n}} - x_{k,n}, \quad x_{k,n} = \frac{F_{k,n-1}}{F_{k,n}} \lim_{n \to \infty} \frac{F_{k,n-1}}{F_{k,n}} = |\tau_k|. \quad (30) \]

Therefore, we have

\[|p_3| \leq \frac{1}{2} \left(c_3 - c_1c_2 + c_1^2 \right) k - \frac{(k^5 + 2k^3 - 4k)}{4} c_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{(k^3 + 4k^3 + 2k)}{4} c_1 c_2 \tau_k \]

\[+ \left\{ \frac{k^2 + 2}{2} c_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{(k^3 + 3k)}{8} c_1^2 \right\} \]

\[\leq \frac{1}{2} \left(c_3 - c_1c_2 + c_1^2 \right) k - \frac{(k^5 + 2k^3 - 4k)}{4} c_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{(k^3 + 4k^3 + 2k)}{4} c_1 c_2 \tau_k \]

\[+ \left\{ \frac{k^2 + 2}{2} c_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{(k^3 + 3k)}{8} c_1^2 \right\} \]

By (30), for sufficiently large \(n \) we have

\[\forall k, \quad |k(k^3 + 3k) - (k^5 + 4k^3 + 2k)x_{k,n}| = (k^5 + 4k^3 + 2k)x_{k,n} - k(k^3 + 3k) \]

and

\[\forall k, \quad |(-k^4 - k^2 + 4) + (k^5 + 2k^3 - 4k)x_{k,n}| = (-k^4 - k^2 + 4) + (k^5 + 2k^3 - 4k)x_{k,n}. \]

168
Therefore, from (11), (12) and (13) we can write for sufficiently large n

\[
|\varphi_3| \leq \left\{ \frac{1}{2} (c_3 - 2c_1 c_2 + c_1^2) k - \frac{(k^5 + 2k^3 - 4k)}{4} c_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{(k^5 + 4k^3 + 2k)}{4} c_1 c_2 \right\} |r_k|^n \left/ F_k \right. \\
+ \left\{ k x_{k, n} + \frac{|(-k^4 - k^2 + 4) + (k^5 + 2k^3 - 4k)x_{k, n}|}{2} + \frac{|(k^3 + 3k) - (k^5 + 4k^3 + 2k)x_{k, n}|}{c_1} \right\} \\
- \frac{|(-k^4 - k^2 + 4) + (k^5 + 2k^3 - 4k)x_{k, n}|}{c_1}|c_1|^3 \right\}
\]

Denote

\[
|c_1| = y, \quad f(y) = \left\{ k x_{k, n} + \frac{(-2k^4 - 4k^2 + 4) + (2k^5 + 6k^3 - 2k)x_{k, n}}{2} y \\
- \frac{(-k^4 - k^2 + 4) + (k^5 + 2k^3 - 4k)x_{k, n}}{8} |c_1|^3 \right\}, \quad y \in [0, 2].
\]

It is easy to check that $f'(y) > 0$ for $y \in [0, 2]$ and for sufficiently large n. Since then, for sufficiently large n, we have

\[
\max_{y \in [0, 2]} \{ f(y) \} = (k^5 + 4k^3 + 3k)x_{k, n} - k(k^3 + 3k) \text{ at } y = 2.
\]

Therefore, we have

\[
\lim_{n \to \infty} \max_{y \in [0, 2]} \{ f(y) \} = (k^5 + 4k^3 + 3k)|\tau_k| - k(k^3 + 3k) \\
= (k^2 + 1)(k^3 + 3k)|\tau_k| - k(k^3 + 3k) \\
= ((k^2 + 1)|\tau_k| - k)(k^3 + 3k) \\
= (k^3 + 3k)|\tau_k|^3.
\]
Hence, we get
\[
\lim_{n \to \infty} \left\{ \frac{k + \frac{|k^5 + 2k^3 - 4k| + k^5 + 4k^3 + 2k^2|c_1| - \frac{|k^5 + 2k^3 - 4k|}{|c_1|^3}}{8} |\tau_k|^3}{F_k,n} + \frac{|(-k^4 - k^2 + 4) + (k^5 + 2k^3 - 4k)x_{k,n}| + |k(k^3 + 3k) - (k^5 + 4k^3 + 2k)x_{k,n}|}{|c_1|^3} \right\} \\
= (k^3 + 3k) |\tau_k|^3 \\
= (k^3 + 3k) \left\{ \frac{\sqrt{k^2 + 4} - k}{2} \right\}^3
\]
which shows that
\[|p_3| \leq (k^3 + 3k) \left\{ \frac{\sqrt{k^2 + 4} - k}{2} \right\}^3.
\]
If we take
\[h(z) = \frac{1 + z}{1 - z} = 1 + 2z + 2z^2 + \ldots,
\]
then putting \(c_1 = c_2 = c_3 = 2\) in (28) gives \(p_3 = (k^3 + 3k) \left\{ \frac{\sqrt{k^2 + 4} - k}{2} \right\}^3\) and it shows that (22) is sharp. It completes the proof.

Conjecture. If \(p(z) = 1 + p_1z + p_2z^2 + \cdots,\) and \(p \prec \tilde{p},\) then
\[|p_n| \leq (F_{k,n-1} + F_{k,n+1}) |\tau_k|^n, \quad n = 1, 2, 3, \ldots,
\]
where \(F_{k,0} = 0, F_{k,1} = 1\) and \(F_{k,n+1} = kF_{k,n} + F_{k,n-1}\) for \(n \geq 1\) is the \(k\)-Fibonacci sequence. This bound would be sharp for the function (25).

This conjecture has been just verified for \(n = 3\) in last Theorem (7), while for \(n = 1, 2\) it was proved in [17].

Theorem 8. If \(f(z) = z + a_2z^2 + \ldots\) belongs to \(S\mathcal{L}^k,\) then
\[|a_2a_4 - a_3^2| \leq \frac{2k^4 + 6k^2 + 3}{3} \left\{ \frac{\sqrt{k^2 + 4} - k}{2} \right\}^4.
\]
Proof. For given \(f \in S\mathcal{L}^k,\) define \(p(z) = 1 + p_1z + p_2z^2 + \cdots,\) by
\[
\frac{zf'(z)}{f(z)} = p(z)
\]
where \(p \prec \tilde{p} \). Hence

\[
\frac{zf'(z)}{f(z)} = 1 + a_2z + (2a_3 - a_2^2)z^2 + (3a_4 - 3a_2a_3 + a_2^3)z^3 + \cdots = 1 + p_1z + p_2^2z^2 + \cdots
\]

and

\[
a_2 = p_1, \quad a_3 = \frac{p_1^2 + p_2}{2}, \quad a_4 = \frac{p_1^3 + 3p_1p_2 + 2p_3}{6}.
\]

Therefore,

\[
a_2a_4 - a_3^2 = \frac{1}{12}(-p_1^4 + 4p_1p_3 - 3p_2^2). \tag{32}
\]

Using Theorem (6) and Theorem (7), we obtain

\[
|a_2a_4 - a_3^2| = \left| \frac{1}{12}(-p_1^4 + 4p_1p_3 - 3p_2^2) \right|
\leq \frac{1}{12} \left(|p_1|^4 + 4|p_1||p_3| + 3|p_2|^2 \right)
\leq \frac{1}{12} \left(\left\{ \frac{\sqrt{k^2 + 4} - k}{2} \right\}^4 + 4 \left(\frac{\sqrt{k^2 + 4} - k}{2} \right) \left(k^3 + 3k \right) \left\{ \frac{\sqrt{k^2 + 4} - k}{2} \right\}^3 \right.
\]

\[
+3((k^2 + 2)^2 \left(\frac{k - \sqrt{k^2 + 4}}{2} + 1 \right)^2 \right)
\]

\[
= \frac{2k^4 + 6k^2 + 3}{3} \left\{ \frac{\sqrt{k^2 + 4} - k}{2} \right\}^4.
\]

Conjecture. If \(f(z) = z + a_2z^2 + \ldots \) belongs to \(SL^k \), then

\[
|a_2a_4 - a_3^2| \leq \left(\frac{\sqrt{k^2 + 4} - k}{2} \right)^4. \tag{33}
\]

The bound is sharp.

Theorem 9. If \(f(z) = z + a_2z^2 + \ldots \) belongs to \(KSL^k \), then

\[
|a_2a_4 - a_3^2| \leq \frac{3k^4 + 9k^2 + 4}{36} \left\{ \frac{\sqrt{k^2 + 4} - k}{2} \right\}^4.
\]
Proof. For given $f \in \mathcal{KSL}^k$, define $p(z) = 1 + p_1 z + p_2^2 z^2 + \cdots$, by

$$1 + \frac{zf''(z)}{f'(z)} = p(z) = 1 + p_1 z + p_2^2 z^2 + \cdots,$$

where $p \prec \tilde{p}$ in \mathbb{U}. Hence

$$1 + \frac{zf''(z)}{f'(z)} = 1 + 2a_2 z + (6a_3 - 4a_2^2)z^2 + (12a_4 - 18a_2 a_3 + 8a_2^3)z^3 + \cdots = 1 + p_1 z + p_2^2 z^2 + \cdots$$

and

$$a_2 = \frac{p_1}{2}, \quad a_3 = \frac{p_1^2 + p_2}{6}, \quad a_4 = \frac{p_1^3 + 3p_1 p_2 + 2p_3}{24}.$$

Therefore, using Theorem (6) and Theorem (7), we obtain

$$|a_2 a_4 - a_3^2| \leq \frac{3k^4 + 9k^2 + 4}{36} \left\{ \frac{\sqrt{k^2 + 4} - k}{2} \right\}^4.$$

Especially, if we take $k = 1$ in Theorem (8) and Theorem (9), we obtain the results of Sokól et al. in [18] as follows:

Corollary 10. If $f(z) = z + a_2 z^2 + \ldots$ belongs to \mathcal{SL}, then

$$|a_2 a_4 - a_3^2| \leq \frac{11}{3} \left\{ \frac{\sqrt{5} - 1}{2} \right\}^4.$$ \hspace{1cm} (34)

Corollary 11. If $f(z) = z + a_2 z^2 + \ldots$ belongs to \mathcal{KSL}, then

$$|a_2 a_4 - a_3^2| \leq \frac{4}{9} \left\{ \frac{\sqrt{5} - 1}{2} \right\}^4.$$ \hspace{1cm} (35)

Acknowledgement This research has been supported with grant number FEN.17.026 by DUBAP (Dicle University Coordination Committee of Scientific Research Projects). The authors would like to thank DUBAP for their supporting and the referees for the helpful suggestions.

References

Hatun Özlem Güney
Department of Mathematics, Faculty of Science,
University of Dicle,
Diyarbakır, Turkey
email: ozlemg@dicle.edu.tr

Janusz Sokól
Faculty of Mathematics and Natural Sciences
University of Rzeszów,
Rzeszów, Poland
email: jsokol@ur.edu.pl

Sedat İlhan
Department of Mathematics, Faculty of Science,
University of Dicle,
Diyarbakır, Turkey
email: sedati@dicle.edu.tr