Generalization on local property of absolute matrix summability of factored Fourier series

Şebnem Yıldız
Ahi Evran University/Department of Mathematicst, Kirşehir, Turkey
sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com

Abstract: In this paper, a known theorem dealing with $|\hat{N}, p_n|_k$ summability methods of Fourier series is generalized to more general cases by taking normal matrices and by using local property of absolute matrix summability of factored Fourier series.

Keywords: Summability factors, absolute matrix summability, Fourier series, infinite series, Hölder inequality, Minkowski inequality.

MSC2010: 26D15; 42A24; 40F05; 40G99.

1 Introduction

Let (s_n) denote the n-th partial sum of the series $\sum a_n$. We write

$$R_n = \left\{ s_1 + \frac{1}{2}s_2 + \frac{1}{3}s_3 + \ldots + \frac{1}{n}s_n \right\} / \log n.$$

Then the series $\sum a_n$ is said to be absolutely summable $(R, \log n, 1)$ or summable $|R, \log n, 1|$ if the sequence $\{R_n\}$ is of bounded variation, that is, the infinite series

$$\sum |R_n - R_{n+1}|$$

is convergent. Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^{n} p_v \to \infty \ \text{as} \ n \to \infty, \ \ (P_{-i} = p_{-i} = 0, \ i \geq 1).$$

The sequence-to-sequence transformation

$$w_n = \frac{1}{P_n} \sum_{v=0}^{n} p_v s_v$$

defines the sequence (w_n) of the Riesz mean or simply the (\hat{N}, p_n) mean of the sequence (s_n) generated by the sequence of coefficients (p_n) (see [8]).

The series $\sum a_n$ is said to be summable $|\hat{N}, p_n|_k$, $k \geq 1$, if (see [3])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |w_n - w_{n-1}|^k < \infty.$$
In the special case when \(p_n = 1 \) for all values of \(n \) (resp.\(k = 1 \)), \(|N,p_n|_k\) summability is the same as \(|C,1|_k\) (resp.\(|N,p_n|)\) summability. Also, if we take \(k = 1 \) and \(p_n = 1/(n + 1) \), \(|N,p_n|_k\) summability is equivalent to \(|R,\log n,1|\) summability.

A lower triangular matrix of nonzero diagonal entries is said to be a normal matrix. Let \(A = (a_{nv}) \) be a normal matrix, we associate two lower semimatrices \(\tilde{A} = (\tilde{a}_{nv}) \) and \(\hat{A} = (\hat{a}_{nv}) \) with entries defined by,

\[
\tilde{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \ldots
\]

and

\[
\hat{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \Delta \tilde{a}_{nv}, \quad n = 1, 2, \ldots
\]

It should be noted that \(\hat{A} \) and \(\tilde{A} \) are the well-known matrices of series to series and series to sequence transformations, respectively. Then, we have

\[
A_n(s) = \sum_{v=0}^{n} a_{nv}s_v = \sum_{v=0}^{n} \tilde{a}_{nv}a_v
\]

\[
\hat{A}_n(s) = \sum_{v=0}^{n} \hat{a}_{nv}a_v
\]

Let \((\theta_n) \) be any sequence of positive real numbers. The series \(\sum a_n \) is said to be summable \(|A,\theta_n|, k \geq 1\), (see [12],[20]) if

\[
\sum_{n=1}^{\infty} \theta_n^{k-1} |A_n(s) - A_{n-1}(s)|^k < \infty.
\]

In the special case, if we take \(a_{nv} = \frac{p_v}{p_n} \) and \(\theta_n = \frac{p_n}{p_n} \), then we have \(|N,p_n|k\) summability. Also, if we take \(\theta_n = n \) and \(a_{nv} = \frac{p_v}{p_n} \), then we have \(|R,p_n|k\) summability (see [5]).

2 The Known Results

Let \(f \) be a periodic function with period \(2\pi \) and integrable \((L)\) over \((-\pi, \pi)\). Without any loss of generality the constant term in the constant term in the Fourier series of \(f \) can be taken to be zero, so that

\[
f(t) \sim \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} C_n(t).
\]

where

\[
a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)dt, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)\cos(nt)dt, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)\sin(nt)dt.
\]

We write

\[
\phi(t) = \frac{1}{2} \{ f(x + t) + f(x - t) \}.
\]
It is well known that the convergence of the Fourier series at \(t = x \) is a local property of \(f \) (i.e., depends only on the behaviour of \(f \) in an arbitrarily small neighbourhood of \(x \)), and so the summability of the Fourier series \(t = x \) by any regular linear summability method is also a local property of \(f \).

It has been pointed out by Bosanquet [1] that for the case \(\lambda_n = \log n \), the definition of absolutely summable \((R, \log n, 1) \) or summable \([R, \log n, 1] \) is equivalent to the definition of the summability \([R, \lambda_n, 1] \) used by Mohanty [11], \(\lambda_n \) being a monotonic increasing sequence tending to infinity with \(n \).

Matsumoto [9] improved this result by replacing the series \(\sum (\log n)^{-1} C_n(t) \) by

\[
\sum (\log \log n)^{-p} C_n(t), \quad p > 1.
\]

Bhatt [2] showed that the factor \((\log \log n)^{-p}\) in the above series can be replaced by the more general factor \(\gamma_n \log n\) where \((\gamma_n)\) is a convex sequence such that \(\sum n^{-1} \gamma_n\) is convergent. Borwein [7] generalized Bhatt’s result by proving that \((\lambda_n)\) is a sequence for which

\[
\sum_{n=1}^{\infty} \frac{p_n}{P_n} |\lambda_n| < \infty \quad \text{and} \quad \sum_{n=1}^{\infty} |\Delta \lambda_n| < \infty,
\]

then the summability \([R, P_n, 1]\) of the factored Fourier series

\[
\sum_{n=1}^{\infty} \lambda_n C_n(t)
\]

at any point is a local property of \(f \). On the other hand, Mishra [10] proved that if \((\gamma_n)\) is as above, and if

\[
P_n = O(np_n) \quad \text{and} \quad P_n \Delta p_n = O(p_n p_{n+1}),
\]

the summability \([\bar{N}, p_n]\) of the series

\[
\sum_{n=1}^{\infty} \gamma_n \frac{P_n}{np_n} C_n(t),
\]

at any point is a local property of \(f \). Bor [4] showed that \([\bar{N}, p_n]\) in Mishra’s result can be replaced by a more general summability method \([\bar{N}, p_n]_k\), and introduced the following theorem on the local property of the summability \([\bar{N}, p_n]_k\) of the factored Fourier series, which generalizes most of the above results under more appropriate conditions then those given in them.

Theorem 2.1 [6] Let \(k \geq 1 \) and the sequences \((p_n)\) and \((\lambda_n)\) be such that

1. \(\Delta X_n = O(1/n) \),
2. \(\sum_{n=1}^{\infty} n^{-1} \left(|\lambda_n|^k + |\lambda_{n+1}|^k \right) X_n^{k-1} < \infty \),
3. \(\sum_{n=1}^{\infty} (X_n^k + 1) |\Delta \lambda_n| < \infty \),

where \(X_n = (np_n)^{-1} P_n \). Then the summability \([\bar{N}, p_n]_k \) \(k \geq 1 \) of the series \(\sum_{n=1}^{\infty} \lambda_n X_n C_n(t) \) at a point can be ensured by a local property.
3 The Main Results

Many studies have been done for matrix generalization of Fourier series (see [13]-[28]). The aim of this paper is to extend Theorem 2.1 for $|A, \theta_n|_k$ summability method by taking normal matrices instead of weighted mean matrices.

Theorem 3.1 Let $A = (a_{nv})$ be a positive normal matrix such that

\[
\overline{a}_{n0} = 1, \quad n = 0, 1, ..., \quad (4)
\]

\[
a_{n-1,v} \geq a_{nv}, \quad \text{for } n \geq v + 1, \quad (5)
\]

\[
\sum_{v=1}^{n-1} a_{nv} \hat{a}_{n,v+1} = O(a_{nn}). \quad (6)
\]

Let $(\theta_n a_{nn})$ be a non increasing sequence. If (λ_n) and (X_n) are sequences satisfying the following conditions:

\[
\sum_{n=1}^{\infty} (\theta_n a_{nn})^{k-1} n^{-1} \left\{ |\lambda_n|^k + |\lambda_{n+1}|^k \right\} X_n^{k-1} < \infty, \quad (7)
\]

\[
\sum_{n=1}^{\infty} (\theta_n a_{nn})^{k-1} (X_n^k + 1)|\Delta \lambda_n| < \infty, \quad (8)
\]

\[
\Delta X_n = O(1/n), \quad (9)
\]

where $X_n = (na_{nn})^{-1}$, and (θ_n) is any sequence of positive constants, then the summability $|A, \theta_n|_k, k \geq 1$ of the series

\[
\sum \lambda_n X_n C_n(t),
\]

at a point can be ensured by a local property.

We need the following lemma for the proof of Theorem 3.1.

Lemma 3.2 Let $(\theta_n a_{nn})$ be a non increasing sequence. Suppose that the matrix A and the sequences (λ_n) and (X_n) satisfy all the conditions of Theorem 3.1, and that (s_n) is bounded and (θ_n) is any sequence of positive constants. Then the series

\[
\sum_{n=1}^{\infty} \lambda_n X_n a_n \quad (10)
\]

is summable $|A, \theta_n|_k, k \geq 1$.

4 Proof of Lemma 3.2

Let (T_n) denotes the A-transform of the series (10). Then we have,

\[
\Delta T_n = \sum_{v=1}^{n} \hat{a}_{nv} \lambda_v X_v, \quad X_0 = 0.
\]

Applying Abel’s transformation to this sum we have

\[
\overline{\Delta} T_n = \sum_{v=1}^{n-1} \Delta(\hat{a}_{nv} \lambda_v X_v) s_v + a_{nn} \lambda_n X_n s_n.
\]
By the formula for the difference of products of sequences (see [8], p.129) we have
\[
\Delta(\hat{a}_{nv} \lambda_v X_v) = \lambda_v X_v \Delta \hat{a}_{nv} + \Delta(\lambda_v X_v) \hat{a}_{nv} + \Delta(\lambda_v) \hat{a}_{nv} + (X_v \Delta \lambda_v + \Delta X_v \lambda_v) \hat{a}_{nv},
\]
\[
\Delta T_n = \sum_{v=1}^{n-1} \hat{a}_{n,v+1} X_v \Delta \lambda_v s_v + \sum_{v=1}^{n-1} \hat{a}_{n,v+1} \lambda_v \Delta X_v s_v + \sum_{v=1}^{n-1} \Delta \hat{a}_{nv} \lambda_v X_v s_v + a_{nn} \lambda_v X_v s_n
\]
\[
= T_n(1) + T_n(2) + T_n(3) + T_n(4).
\]

To complete the proof of Lemma 3.2, by Minkowski inequality, it is sufficient to show that
\[
\sum_{n=1}^{\infty} \theta_n^{k-1} |T_{n,r}|^k < \infty, \quad \text{for } r = 1, 2, 3, 4. \quad (11)
\]

The elements \(\hat{a}_{nv} \geq 0 \) for each \(v, n \). It is easily seen by using conditions (4) and (5) of Theorem 3.1. For detail (see [18]).

Also,
\[
\sum_{v=1}^{n-1} |\Delta a_{nv}| = \sum_{v=1}^{n-1} (a_{n-1,v} - a_{nv}) = a_{n-1,0} - a_{n0} + a_{n0} - a_{n-1,0} + a_{nn}
\]
\[
= a_{n0} - a_{n-1,0} + a_{nn} \leq a_{nn}. \quad (12)
\]

First, by applying Hölder’s inequality with indices \(k \) and \(k' \), where \(k > 1 \) and \(\frac{1}{k} + \frac{1}{k'} = 1 \), we have that
\[
\sum_{n=2}^{m+1} \theta_n^{k-1} |T_{n,1}|^k \leq \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1} X_v | \Delta \lambda_v |s_v| \right)^k
\]
\[
= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1} X_v | \Delta \lambda_v |s_v| \right)^k
\]
and by taking account of (4) and (5), we have \(\hat{a}_{n,v+1} \leq a_{nn} \), for \(1 \leq v \leq n-1 \) which implies that
\[
\sum_{v=1}^{n-1} \hat{a}_{n,v+1} |\Delta \lambda_v| \leq a_{nn} \sum_{v=1}^{n-1} |\Delta \lambda_v| = O(a_{nn}),
\]

thus,
\[
\sum_{n=2}^{m+1} \theta_n^{k-1} |T_{n,1}|^k = O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} a_{nn}^{k-1} \sum_{v=1}^{n-1} \hat{a}_{n,v+1} X_v | \Delta \lambda_v |
\]
\[
= O(1) \sum_{v=1}^{m} X_v | \Delta \lambda_v | \sum_{n=v+1}^{m+1} (\theta_v a_{nn})^{k-1} \hat{a}_{n,v+1} = O(1) \sum_{v=1}^{m} (\theta_v a_{nn})^{k-1} X_v | \Delta \lambda_v | \sum_{n=v+1}^{m+1} \hat{a}_{n,v+1}
\]
\[
= O(1) \sum_{v=1}^{m} (\theta_v a_{nn})^{k-1} X_v | \Delta \lambda_v |
\]
\[
= O(1) \quad \text{as } m \to \infty,
\]
in view of condition (8). Note that from (9) follows that \(\Delta X_v = O(a_{vv}X_v) \). Also, we have

\[
\sum_{n=2}^{m+1} \vartheta_n^{k-1} |T_{n,2}|^k \leq \sum_{n=2}^{m+1} \vartheta_n^{k-1} \left(\sum_{\nu=1}^{n-1} \hat{a}_n,\nu+1 |\nu+1||\Delta X_v||s_\nu| \right)^k
\]

\[
= O(1) \sum_{n=2}^{m+1} \vartheta_n^{k-1} \left(\sum_{\nu=1}^{n-1} \hat{a}_n,\nu+1 |\nu+1|a_{vv}X_v \right)^k
\]

\[
= O(1) \sum_{n=2}^{m+1} \vartheta_n^{k-1} \left(\sum_{\nu=1}^{n-1} \hat{a}_n,\nu+1 |\nu+1|^k a_{vv}X_v^k \right) \left(\sum_{\nu=1}^{n-1} a_{vv}\hat{a}_n,\nu+1 \right)^{k-1}
\]

\[
= O(1) \sum_{n=2}^{m+1} \vartheta_n^{k-1} a_{nn}^{k-1} \left(\sum_{\nu=1}^{n-1} a_{vv}\hat{a}_n,\nu+1 |\nu+1|^k X_v^k \right)
\]

\[
= O(1) \sum_{\nu=1}^{m} |\nu+1|^k a_{vv}X_v^k \sum_{n=\nu+1}^{m+1} (\vartheta_\nu a_{nn})^{k-1} \hat{a}_n,\nu+1 = O(1) \sum_{\nu=1}^{m} (\vartheta_\nu a_{vv})^{k-1} |\nu+1|^k a_{vv}X_v^k \sum_{n=\nu+1}^{m+1} \hat{a}_n,\nu+1
\]

\[
= O(1) \sum_{\nu=1}^{m} (\vartheta_\nu a_{vv})^{k-1} |\nu+1|^k a_{vv}X_v^k - X_v = O(1) \sum_{\nu=1}^{m} (\vartheta_\nu a_{vv})^{k-1} |\nu+1|^k - X_v^{k-1}
\]

\[
= O(1) \quad \text{as} \quad m \to \infty.
\]

by virtue of the hypotheses of Lemma 3.2. On the other hand, we have

\[
\sum_{n=2}^{m+1} \vartheta_n^{k-1} |T_{n,3}|^k = O(1) \sum_{n=2}^{m+1} \vartheta_n^{k-1} \left(\sum_{\nu=1}^{n-1} |\Delta a_{nv}||\nu+1|X_v \right)^k
\]

\[
= O(1) \sum_{n=2}^{m+1} \vartheta_n^{k-1} \left(\sum_{\nu=1}^{n-1} |\Delta a_{nv}||\nu+1|X_v^k \right) \left(\sum_{\nu=1}^{n-1} |\Delta a_{nv}| \right)^{k-1}
\]

\[
= O(1) \sum_{n=2}^{m+1} \vartheta_n^{k-1} a_{nn}^{k-1} \sum_{\nu=1}^{n-1} |\Delta a_{nv}||\nu+1|^k X_v^k
\]

\[
= O(1) \sum_{\nu=1}^{m} |\nu+1|^k X_v^k \sum_{n=\nu+1}^{m+1} (\vartheta_\nu a_{nn})^{k-1} |\Delta a_{nv}| = O(1) \sum_{\nu=1}^{m} (\vartheta_\nu a_{vv})^{k-1} |\nu+1|^k X_v^k \sum_{n=\nu+1}^{m+1} |\Delta a_{nv}|
\]

\[
= O(1) \sum_{\nu=1}^{m} (\vartheta_\nu a_{vv})^{k-1} |\nu+1|^k X_v^{k-1}a_{vv}
\]

\[
= O(1) \sum_{\nu=1}^{m} (\vartheta_\nu a_{vv})^{k-1} |\nu+1|^k X_v^{k-1} - 1
\]

\[
= O(1) \quad \text{as} \quad m \to \infty.
\]

by virtue of the hypotheses of Lemma 3.2. Finally, we have that

\[
\sum_{n=1}^{\infty} \vartheta_n^{k-1} |T_{n,4}|^k = O(1) \sum_{n=1}^{\infty} \vartheta_n^{k-1} |\nu+1|^k X_v^k a_{nn}
\]

\[
= O(1) \sum_{n=1}^{\infty} (\vartheta_\nu a_{nn})^{k-1} |\nu+1|^k X_v^k a_{nn}
\]

\[
= O(1) \sum_{n=1}^{\infty} (\vartheta_\nu a_{nn})^{k-1} |\nu+1|^k X_v^{k-1} \nu^{n-1} < \infty,
\]

by virtue of the hypotheses of Lemma 3.2. This completes the proof of Lemma 3.2.

Proof of Theorem 3.1. Since the convergence of the Fourier series at a point is a local property of its generating function \(f \), the theorem follows by formula (7.1) from Chapter II of the book (see [29]) and from Lemma 3.2.
5 APPLICATIONS

We can apply Theorem 3.1 to weighted mean \(A = (a_{nv}) \) is defined as
\[
a_{nv} = \frac{p_v}{P_n}
\]
where \(P_n = p_0 + p_1 + \ldots + p_n \). We have that,
\[
\bar{a}_{nv} = \frac{P_n - P_{v-1}}{P_n} \quad \text{and} \quad \hat{a}_{n,v+1} = \frac{p_n P_v}{P_n P_{n-1}}.
\]
The following results can be easily verified.
1. If we take \(\theta_n = \frac{P_n}{p_n} \) in Theorem 3.1, then we have another theorem dealing with absolute matrix summability (see [18]).
2. If we take \(\theta_n = \frac{P_n}{p_n} \) and \(a_{nv} = \frac{p_v}{P_n} \) in Theorem 3.1, then we have a theorem dealing with \([N, p_n]_k\) summability (see [6]).
3. If we take \(\theta_n = n \) and \(a_{nv} = \frac{p_v}{P_n} \) in Theorem 3.1, then we obtain a new result dealing with \([R, p_n]_k\) summability method.
4. If we take \(\theta_n = n, a_{nv} = \frac{p_v}{P_n} \) and \(p_n = 1 \) for all values of \(n \) in Theorem 3.1, then we have a result for \([C, 1]_k\) summability.

References

