NEW UNIVALENCE CRITERIA FOR AN INTEGRAL OPERATOR
WITH MOCANU’S AND ŞERB’S LEMMA

C. BĂRBATU, D. BREA

ABSTRACT. In this paper we consider an integral operator for analytic functions
in the open unit disk U and we obtain sufficient conditions for univalence of this
integral operator, using Mocanu’s and Şerb’s Lemma.

2010 Mathematics Subject Classification: 30C45.

Keywords: Integral operator; univalence; unit disk.

1. Introduction

Let A be the class of the functions f which are analytic in the open unit disk
$U = \{z \in \mathbb{C} : |z| < 1\}$ and $f(0) = f'(0) - 1 = 0$.

We denote by S the subclass of A consisting of functions $f \in A$, which are
univalent in U.

We consider the integral operator

$$
T_n(z) = \delta \int_0^z t^{\delta-1} \prod_{i=1}^n \left[\left(\frac{f_i(t)}{t} \right)^{\alpha_i-1} \cdot \left(g_i'(t) \right)^{\beta_i} \cdot \left(\frac{h_i(t)}{k_i(t)} \right)^{\gamma_i} \cdot \left(\frac{h_i'(t)}{k_i'(t)} \right)^{\delta_i} \right] \, dt
$$

for $f_i, g_i, h_i, k_i \in A$ and the complex numbers $\delta, \alpha_i, \beta_i, \gamma_i, \delta_i$, with $\delta \neq 0$, $i = 1, n$, $n \in \mathbb{N} \setminus \{0\}$.
2. Preliminary results

In order to prove main results we will use the following lemmas.

Lemma 1. [7] Let γ, δ be complex numbers, $\text{Re} \gamma > 0$ and $f \in A$. If

$$\frac{1 - |z|^{2 \text{Re} \gamma}}{\text{Re} \gamma} \left| \frac{zf''(z)}{f'(z)} \right| \leq 1,$$

for all $z \in U$, then for any complex number δ, $\text{Re} \delta \geq \text{Re} \gamma$, the function F_δ defined by

$$F_\delta(z) = \left(\delta \int_0^z t^{\delta - 1} f'(t) dt \right)^{\frac{1}{\delta}},$$

is regular and univalent in U.

Lemma 2. [5] Let $M_0 = 1, 5936...$ the positive solution of equation

$$(2 - M) e^M = 2. \quad (2)$$

If $f \in A$ and

$$\left| \frac{f''(z)}{f'(z)} \right| \leq M_0,$$

for $z \in U$, then

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq 1, \quad (z \in U)$$

The edge M_0 is sharp.

Lemma 3. [3] Let f be the function regular in the disk $U_R = \{ z \in \mathbb{C} : |z| < R \}$ with $|f(z)| < M$, M fixed. If $f(z)$ has in $z = 0$ one zero with multiply $\geq m$, then

$$|f(z)| \leq \frac{M}{R^m} z^m,$$

the equality for $z \neq 0$ can hold only if

$$f(z) = e^{i\theta} \frac{M}{R^m} z^m,$$

where θ is constant.
3. Main Results

Theorem 4. Let $\gamma, \delta, \alpha_i, \beta_i, \gamma_i, \delta_i$ be complex numbers, $c = \Re \gamma > 0$, M_0 the positive solution of the equation (2), $M_0 = 1,5936...$ and $f_i, g_i, h_i, k_i \in A$, $f_i(z) = z + a_{2i}z^2 + a_{3i}z^3 + ..., \quad g_i(z) = z + b_{2i}z^2 + b_{3i}z^3 + ..., \quad h_i(z) = z + c_{2i}z^2 + c_{3i}z^3 + ..., \quad k_i(z) = z + d_{2i}z^2 + d_{3i}z^3 + ..., \quad i = \overline{1, n}$ If

$$\left| \frac{f''_i(z)}{f'_i(z)} \right| \leq M_0, \quad \left| \frac{g''_i(z)}{g'_i(z)} \right| \leq M_0, \quad \left| \frac{h''_i(z)}{h'_i(z)} \right| \leq M_0, \quad \left| \frac{k''_i(z)}{k'_i(z)} \right| \leq M_0, \tag{3}$$

for all $z \in U$, $i = \overline{1, n}$ and

$$\frac{1}{c} \sum_{i=1}^{n} |\alpha_i - 1| + \frac{2M_0}{2c+1} \sum_{i=1}^{n} |\beta_i| + \frac{2}{c} \sum_{i=1}^{n} |\gamma_i| + \frac{4M_0}{2c+1} \sum_{i=1}^{n} |\delta_i| \leq 1, \tag{4}$$

then for all δ complex numbers, $Re\delta \geq Re\gamma$, the integral operator T_n, given by (1) is in the class S.

Proof. Let us define the function

$$H_n(z) = \int_{0}^{z} \prod_{i=1}^{n} \left[\left(\frac{f_i(t)}{t} \right)^{\alpha_i-1} \left(\frac{g_i(t)}{t} \right)^{\beta_i} \left(\frac{h_i(t)}{k_i(t)} \right)^{\gamma_i} \left(\frac{h'_i(t)}{k'_i(t)} \right)^{\delta_i} \right] dt,$$

for $f_i, g_i, h_i, k_i \in A$, $i = \overline{1, n}$.

The function H_n is regular in U and satisfy the following usual normalization conditions $H_n(0) = H'_n(0) - 1 = 0$.

We have

$$\frac{zH''_n(z)}{H'_n(z)} = \sum_{i=1}^{n} \left[(\alpha_i - 1) \left(\frac{zf'_i(z)}{f_i(z)} - 1 \right) + \beta_i \frac{zg''_i(z)}{g'_i(z)} \right] +$$

$$+ \sum_{i=1}^{n} \left[\gamma_i \left(\frac{zh'_i(z)}{h_i(z)} - \frac{zk'_i(z)}{k_i(z)} \right) + \delta_i \left(\frac{zh''_i(z)}{h'_i(z)} - \frac{zk''_i(z)}{k'_i(z)} \right) \right],$$

for all $z \in U$.

Therefore

$$\frac{1}{c} \left| \frac{zH''_n(z)}{H'_n(z)} \right| \leq \frac{1}{c} \left| z \right|^{2c} \sum_{i=1}^{n} \left[|\alpha_i - 1| \left| \frac{zf'_i(z)}{f_i(z)} - 1 \right| + |\beta_i| \left| \frac{zg''_i(z)}{g'_i(z)} \right| \right] +$$

$$+ \sum_{i=1}^{n} \left| \gamma_i \left(\frac{zh'_i(z)}{h_i(z)} - \frac{zk'_i(z)}{k_i(z)} \right) + \delta_i \left(\frac{zh''_i(z)}{h'_i(z)} - \frac{zk''_i(z)}{k'_i(z)} \right) \right|,$$
+ \left[|\gamma_i| \left(\left| \frac{zh''_i(z)}{h_i(z)} - 1 \right| + \left| \frac{zk''_i(z)}{k_i(z)} - 1 \right| \right) + |\delta_i| \left(\left| \frac{zh''_i(z)}{h'_i(z)} \right| + \left| \frac{zk''_i(z)}{k'_i(z)} \right| \right) \right], \quad (5)

for all \(z \in \mathcal{U} \).

Using (3), (4) and Lemma Mocanu and Şerb, from (5) we get
\[
\left| \frac{zf'_i(z)}{f_i(z)} - 1 \right| < 1, \quad \left| \frac{zh'_i(z)}{h_i(z)} - 1 \right| < 1, \quad \left| \frac{zk'_i(z)}{k_i(z)} - 1 \right| < 1,
\]
for all \(z \in \mathcal{U}, i = 1, n \) and hence, we have
\[
1 - |z|^{2c} c \left| \frac{zH''_n(z)}{H'_n(z)} \right| \leq 1 - |z|^{2c} c \sum_{i=1}^{n} |\alpha_i - 1| + \\
1 - |z|^{2c} c |z| M_0 \sum_{i=1}^{n} |\beta_i| + 1 - |z|^{2c} c 2 \sum_{i=1}^{n} |\gamma_i| + 1 - |z|^{2c} c |z| 2M_0 \sum_{i=1}^{n} |\delta_i|, \quad (6)
\]
for all \(z \in \mathcal{U} \).

Since
\[
\max_{|z| \leq 1} \left(1 - |z|^{2c} \right) \frac{|z|}{c} = \frac{2}{(2c + 1)^{\frac{2c+1}{2c}}}, \quad (7)
\]
from (6) and (7) we obtain
\[
1 - |z|^{2c} c \left| \frac{zH''_n(z)}{H'_n(z)} \right| \leq \\
\frac{1}{c} \sum_{i=1}^{n} |\alpha_i - 1| + \frac{2M_0}{(2c + 1)^{\frac{2c+1}{2c}}} \sum_{i=1}^{n} |\beta_i| + \frac{2}{c} \sum_{i=1}^{n} |\gamma_i| + \frac{4M_0}{(2c + 1)^{\frac{2c+1}{2c}}} \sum_{i=1}^{n} |\delta_i|, \quad (8)
\]
for all \(z \in \mathcal{U}, i = 1, n \).

Using (6), from (8) we have
\[
1 - |z|^{2c} c \left| \frac{zH''_n(z)}{H'_n(z)} \right| \leq 1. \quad (9)
\]

Now, from (9), by Lemma 2.1, it results that the integral operator \(\mathcal{T}_n \), given by (1) is in the class \(\mathcal{S} \).
Letting $\delta = 1$ in Theorem 3.1, we have

Corollary 5. Let $\gamma, \alpha_1, \beta_i, \gamma_i, \delta_i$ be complex numbers, $0 < \Re \gamma \leq 1$, $c = \Re \gamma$, M_0 the positive solution of the equation (3), $M_0 = 1,5936...$ and $f_i, g_i, h_i, k_i \in \mathcal{A}$, $f_i(z) = z + a_2 z^2 + a_3 z^3 + ..., g_i(z) = z + b_2 z^2 + b_3 z^3 + ..., h_i(z) = z + c_2 z^2 + c_3 z^3 + ..., k_i(z) = z + d_2 z^2 + d_3 z^3 + ..., i = 1, n$.

If

$$\left| \frac{f_i''(z)}{f_i'(z)} \right| \leq M_0, \quad \left| \frac{g_i''(z)}{g_i'(z)} \right| \leq M_0, \quad \left| \frac{h_i''(z)}{h_i'(z)} \right| \leq M_0, \quad \left| \frac{k_i''(z)}{k_i'(z)} \right| \leq M_0,$$

for all $z \in \mathcal{U}$, $i = 1, n$ and

$$\frac{1}{c} \sum_{i=1}^{n} |\alpha_i - 1| + \frac{2M_0}{(2c + 1)^{2+1}} \sum_{i=1}^{n} |\beta_i| + \frac{2}{c} \sum_{i=1}^{n} |\gamma_i| + \frac{4M_0}{(2c + 1)^{2+1}} \sum_{i=1}^{n} |\delta_i| \leq 1,$$

then the integral operator F_n defined by

$$F_n(z) = \int_{0}^{z} \prod_{i=1}^{n} \left[\left(\frac{f_i(t)}{t} \right)^{\alpha_i - 1} \cdot \left(\frac{g_i(t)}{t} \right)^{\beta_i} \cdot \left(\frac{h_i(t)}{t} \right)^{\gamma_i} \cdot \left(\frac{k_i(t)}{t} \right)^{\delta_i} \right] dt,$$ \hspace{1cm} (10)

is in the class \mathcal{S}.

Letting $\delta = 1$ and $\delta_1 = \delta_2 = ... = \delta_n = 0$ in Theorem 3.1, we have

Corollary 6. Let $\gamma, \alpha_i, \beta_i, \gamma_i$ be complex numbers, $0 < \Re \gamma \leq 1$, $c = \Re \gamma$, M_0 the positive solution of the equation (2), $M_0 = 1,5936...$ and $f_i, g_i, h_i, k_i \in \mathcal{A}$, $f_i(z) = z + a_2 z^2 + a_3 z^3 + ..., g_i(z) = z + b_2 z^2 + b_3 z^3 + ..., h_i(z) = z + c_2 z^2 + c_3 z^3 + ..., k_i(z) = z + d_2 z^2 + d_3 z^3 + ..., i = 1, n$.

If

$$\left| \frac{f_i''(z)}{f_i'(z)} \right| \leq M_0, \quad \left| \frac{g_i''(z)}{g_i'(z)} \right| \leq M_0, \quad \left| \frac{h_i''(z)}{h_i'(z)} \right| \leq M_0, \quad \left| \frac{k_i''(z)}{k_i'(z)} \right| \leq M_0,$$

for all $z \in \mathcal{U}$, $i = 1, n$ and

$$\frac{1}{c} \sum_{i=1}^{n} |\alpha_i - 1| + \frac{2M_0}{(2c + 1)^{2+1}} \sum_{i=1}^{n} |\beta_i| + \frac{2}{c} \sum_{i=1}^{n} |\gamma_i| \leq 1,$$

then the integral operator S_n defined by

$$S_n(z) = \int_{0}^{z} \prod_{i=1}^{n} \left[\left(\frac{f_i(t)}{t} \right)^{\alpha_i - 1} \cdot \left(\frac{g_i(t)}{t} \right)^{\beta_i} \cdot \left(\frac{h_i(t)}{t} \right)^{\gamma_i} \cdot \left(\frac{k_i(t)}{t} \right)^{\delta_i} \right] dt,$$ \hspace{1cm} (11)

is in the class \mathcal{S}.
Letting $\delta = 1$ and $\beta_1 = \beta_2 = \ldots = \beta_n = 0$ in Theorem 3.1, we obtain

Corollary 7. Let $\gamma, \alpha_i, \gamma_i, \delta_i$ be complex numbers, $0 < \text{Re}\gamma \leq 1$, $c = \text{Re}\gamma$, $i = \overline{1,n}$, M_0 the positive solution of the equation (2), $M_0 = 1,5936\ldots$ and $f_i, h_i, k_i \in A$, $f_i(z) = z + a_{2i}z^2 + a_{3i}z^3 + \ldots$, $h_i(z) = z + c_{2i}z^2 + c_{3i}z^3 + \ldots$, $k_i(z) = z + d_{2i}z^2 + d_{3i}z^3 + \ldots$, $i = \overline{1,n}$.

If

$$\left| \frac{f_i''(z)}{f_i'(z)} \right| \leq M_0, \quad \left| \frac{h_i''(z)}{h_i'(z)} \right| \leq M_0, \quad \left| \frac{k_i''(z)}{k_i'(z)} \right| \leq M_0,$$

for all $z \in U$, $i = \overline{1,n}$ and

$$\frac{1}{c} \sum_{i=1}^{n} |\alpha_i - 1| + \frac{2}{c} \sum_{i=1}^{n} |\gamma_i| + \frac{4M_0}{(2c + 1)^{2c}} \sum_{i=1}^{n} |\delta_i| \leq 1,$$

then the integral operator X_n defined by

$$X_n(z) = \int_{0}^{z} \prod_{i=1}^{n} \left(\frac{f_i(t)}{t} \right)^{\alpha_i - 1} \cdot \left(\frac{h_i(t)}{k_i(t)} \right)^{\gamma_i} \cdot \left(\frac{h_i'(t)}{k_i'(t)} \right)^{\delta_i} \, dt,$$ \hspace{1cm} (12)

is in the class S.

Letting $\delta = 1$ and $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$ in Theorem 3.1, we have

Corollary 8. Let $\gamma, \beta_i, \gamma_i, \delta_i$ be complex numbers, $0 < \text{Re}\gamma \leq 1$, $c = \text{Re}\gamma$, M_0 the positive solution of the equation (2), $M_0 = 1,5936\ldots$ and $g_i, h_i, k_i \in A$, $g_i(z) = z + b_{2i}z^2 + b_{3i}z^3 + \ldots$, $h_i(z) = z + c_{2i}z^2 + c_{3i}z^3 + \ldots$, $k_i(z) = z + d_{2i}z^2 + d_{3i}z^3 + \ldots$, $i = \overline{1,n}$.

If

$$\left| \frac{g_i''(z)}{g_i'(z)} \right| \leq M_0, \quad \left| \frac{h_i''(z)}{h_i'(z)} \right| \leq M_0, \quad \left| \frac{k_i''(z)}{k_i'(z)} \right| \leq M_0,$$

for all $z \in U$, $i = \overline{1,n}$ and

$$\frac{2M_0}{(2c + 1)^{2c}} \sum_{i=1}^{n} |\beta_i| + \frac{2}{c} \sum_{i=1}^{n} |\gamma_i| + \frac{4M_0}{(2c + 1)^{2c}} \sum_{i=1}^{n} |\delta_i| \leq 1,$$

then the integral operator D_n defined by

$$D_n(z) = \int_{0}^{z} \prod_{i=1}^{n} \left(\frac{g_i(t)}{t} \right)^{\beta_i} \cdot \left(\frac{h_i(t)}{k_i(t)} \right)^{\gamma_i} \cdot \left(\frac{h_i'(t)}{k_i'(t)} \right)^{\delta_i} \, dt,$$ \hspace{1cm} (13)

is in the class S.

106
Letting $\delta = 1$ and $\gamma_1 = \gamma_2 = \ldots = \gamma_n = 0$ in Theorem 3.1, we have

Corollary 9. Let $\gamma, \alpha_i, \beta_i, \delta_i$ be complex numbers, $0 < Re\gamma \leq 1$, $c = Re\gamma$, M_0 the positive solution of the equation (2), $M_0 = 1.5936...$ and $f_i, g_i, h_i, k_i \in \mathcal{A}$, $f_i(z) = z + a_{2i}z^2 + a_{3i}z^3 + \ldots$, $g_i(z) = z + b_{2i}z^2 + b_{3i}z^3 + \ldots$, $h_i(z) = z + c_{2i}z^2 + c_{3i}z^3 + \ldots$, $k_i(z) = z + d_{2i}z^2 + d_{3i}z^3 + \ldots$, $i = 1, n$.

If
\[
\frac{|f''(z)|}{f'(z)} \leq M_0, \quad \frac{|g''(z)|}{g'(z)} \leq M_0, \quad \frac{|h''(z)|}{h'(z)} \leq M_0, \quad \frac{|k''(z)|}{k'(z)} \leq M_0,
\]
for all $z \in \mathcal{U}$, $i = 1, n$ and
\[
\frac{1}{e} \sum_{i=1}^{n} |\alpha_i - 1| + \frac{2M_0}{(2c + 1)^{2c+1}} \sum_{i=1}^{n} |\beta_i| + \frac{4M_0}{(2c + 1)^{2c+1}} \sum_{i=1}^{n} |\delta_i| \leq 1,
\]
then the integral operator Y_n defined by
\[
Y_n(z) = \int_0^z \prod_{i=1}^{n} \left[\left(\frac{f_i(t)}{t} \right)^{\alpha_i-1} \cdot (g_i'(t))^{\beta_i} \cdot \left(\frac{h_i(t)}{k_i(t)} \right)^{\delta_i} \right] dt, \quad (14)
\]
is in the class \mathcal{S}.

Letting $n = 1$, $\delta = \gamma = \alpha$ and $\alpha_i - 1 = \beta_i = \gamma_i$ in Theorem 3.1, we obtain

Corollary 10. Let α be complex number, $a = Re\alpha > 0$, M_0 the positive solution of the equation (2), $M_0 = 1.5936...$ and $f, g, h, k \in \mathcal{A}$, $f(z) = z + a_2z^2 + a_3z^3 + \ldots$, $g(z) = z + b_2z^2 + b_3z^3 + \ldots$, $h(z) = z + c_2z^2 + c_3z^3 + \ldots$, $k(z) = z + d_2z^2 + d_3z^3 + \ldots$.

If
\[
\frac{|f''(z)|}{f'(z)} \leq M_0, \quad \frac{|g''(z)|}{g'(z)} \leq M_0, \quad \frac{|h''(z)|}{h'(z)} \leq M_0, \quad \frac{|k''(z)|}{k'(z)} \leq M_0,
\]
for all $z \in \mathcal{U}$, and
\[
\frac{\alpha - 1}{a} + \frac{2\beta M_0 a^{2a+1}}{(2a + 1)^{2a+1}} + \frac{2\gamma}{a} + \frac{4\delta M_0 a^{2a+1}}{(2a + 1)^{2a+1}} \leq 1,
\]
then the integral operator T defined by
\[
T(z) = \left[\alpha \int_0^z t^{\alpha-1} \left(f(t) \cdot g'(t) \cdot \frac{h(t)}{k(t)} \cdot \frac{h'(t)}{k'(t)} \right)^{\alpha-1} dt \right]^\frac{1}{\alpha}, \quad (15)
\]
is in the class \mathcal{S}.
Letting $M_0 = M$ from (3) in Theorem 3.1, we obtain

Corollary 11. Let $\gamma, \delta, \alpha_i, \beta_i, \gamma_i, \delta_i$ be complex numbers, $c = \text{Re}\gamma > 0$, M a positive number and M_0 the positive solution of the equation (2), $M_0 = 1, 5936...$ and $f_i, g_i, h_i, k_i \in \mathcal{A}$, $f_i(z) = z + a_{2i}z^2 + a_{3i}z^3 + \ldots$, $g_i(z) = z + b_{2i}z^2 + b_{3i}z^3 + \ldots$, $h_i(z) = z + c_{2i}z^2 + c_{3i}z^3 + \ldots$, $k_i(z) = z + d_{2i}z^2 + d_{3i}z^3 + \ldots$, $i = 1, n$

If

$$
\left| \frac{f''_i(z)}{f'_i(z)} \right| \leq M_0, \quad \left| \frac{g''_i(z)}{g'_i(z)} \right| \leq M_0, \quad \left| \frac{h''_i(z)}{h'_i(z)} \right| \leq M_0, \quad \left| \frac{k''_i(z)}{k'_i(z)} \right| \leq M_0,
$$

for all $z \in \mathcal{U}, i = 1, n$ and

$$
\frac{1}{c} \sum_{i=1}^{n} |\alpha_i - 1| + \frac{2M}{c} \sum_{i=1}^{n} |\beta_i| + \frac{2}{c} \sum_{i=1}^{n} |\gamma_i| + \frac{4M_0}{(2c+1)^{2c+2}} \sum_{i=1}^{n} |\delta_i| \leq 1,
$$

then $f_i, g_i, h_i, k_i \in \mathcal{S}$, $i = 1, n$ and for all δ complex numbers, $\text{Re}\delta \geq \text{Re}\gamma$, the integral operator \mathcal{T}_n, given by (1) is in the class \mathcal{S}.

References

Camelia Bărbatu
Faculty of Mathematics and Computer Science,
"Babeş-Bolyai" University,
Cluj Napoca, Romania
email: camipode@yahoo.com

Daniel Breaz
Department of Mathematics, Faculty of Exact Sciences and Engineering,
"1 Decembrie" University,
Alba Iulia, Romania
email: dbreaz@uab.ro