ON THE DISSIPATION LAYER OF RADIAL BEARINGS

R.O. AYENI, S.S. OKOYA and C.J. AGORZIE

Department of Mathematics
University of Ife
Ile-Ife, Nigeria

(Received May 14, 1986)

ABSTRACT. The dissipation boundary layer of certain radial bearings is identified. It is shown that, under certain conditions, the temperature outside this layer is constant.

KEY WORDS AND PHRASES. Dissipation boundary layer, variable viscosity, coupled momentum and energy equations, thin lubricating oils.

1980 AMS SUBJECT CLASSIFICATION CODE. 80A20.

1. INTRODUCTION.

In paper [1], we discussed the solution to the coupled momentum and energy equations

\[\frac{\partial \dot{\gamma}}{\partial t} = Pr \frac{\partial}{\partial y} \left(\exp \left(\frac{\lambda_1}{\theta + \lambda_2} \right) \frac{\partial \dot{\gamma}}{\partial y} \right), \]

\[\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial y^2} - \left(\frac{\partial \theta}{\partial y} \right)^2 + \Delta \exp \left(\frac{\theta + \lambda_1}{\theta + \lambda_2} \right) \left(\frac{\partial \dot{\gamma}}{\partial y} \right)^2 \]

where \(\lambda_1, \lambda_2 \) and \(\Delta \) are constants.

The boundary and initial conditions are

\[\frac{\partial \dot{\gamma}}{\partial y}(0,t) = - \frac{B}{\sqrt{\gamma}}. \dot{\gamma}(0,t) \quad \text{given, } \dot{\gamma}(\infty,t) = 0 \]

\[\dot{\gamma}(y,0) = 0 \]

\[\theta(0,t) = \theta(\infty,t) = 0 \]

\[\theta(y,0) = 0 \]

The above equations arose from investigations on the flow of thin lubricating oils.

Earlier in [2], we discussed the thermal runaway of variable viscosity flows between concentric cylinders - there is a wide gap between the cylinders and we show that, under certain conditions which affect the Peclet number, the reduced Reynolds number and the Nahme-Griffith number, the width of the thermal boundary layer is \(O(R) \) where \(R \) is the radius of the inner cylinder. Under the same assumptions, there exists a dissipation boundary layer of width \(O(R/G^2) \) where \(G \) is the Nahme-Griffith number.

In the case of radial bearings, the width, \(h \), of the lubricant is small and thus if \(R_1, R_2 \) are the radii of the shaft and the bearing then

\[R_i >> h. \quad i = 1, 2 \]
(1.7) implies that as a first approximation, we may regard the shaft and the bearing as flat surfaces, that is $R_1 = \infty$ when h is the standard measure. We therefore need to investigate the boundary layer of the lubrication problem although $0(R/G) = \infty$ is adequate for [2].

2. DISSIPATION BOUNDARY LAYER.

Shampine [3] investigated the problem

$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(D(c) \frac{\partial c}{\partial x} \right),$$

$$c(0,t) = 1, \quad \frac{\partial c}{\partial x}(0,t), \quad \text{given}$$

(2.1)

(2.2)

He showed that if

$$-D(1) \frac{\partial c}{\partial t}(0,t) = \frac{1}{2} + \max D(c),$$

then there is an $\eta_1 < 1$ such that $c(\eta_1) = 0$, where $\eta = x/\sqrt{c}$. For the proof of this, see [3].

In this paper as in [1], we have

$$\Pr \exp\left(\frac{\lambda_1}{\beta \lambda_2}\right)$$

in the plane of $D(c)$ above, but a careful study of the proof advanced by Shampine showed that his result is true for (1.1). That is, there exists an $\eta_1 < 1$ such that if

$$B = 1 + \frac{1}{2} e^{-\lambda_2}$$

(2.3)

then there exists an $\eta_1 < 1$ such that $\phi(\eta_1) = 0$ and $\phi(\eta) \equiv 0$ for $\eta \geq \eta_1$. This leads to

THEOREM. Let (1.1), (1.2) (1.3) (1.6), and (2.3) hold. Then there exists an $\eta_2 < 1$ such that $\theta(\eta_2) = 0$ and $\theta(\eta) \equiv 0$ and $\eta \geq \eta_2$.

PROOF. $\phi(\eta_1) \equiv 0$ for $\eta \geq \eta_1$

implies $\frac{\partial \phi}{\partial y} \equiv 0$ for $\eta > \eta_1$.

That is, $\frac{\partial \phi}{\partial y} \equiv 0$ for $\eta \geq \eta_2 = \eta_1$.

Hence $\theta \equiv 0$ for $\eta \geq \eta_2$.

3. PHYSICAL INTERPRETATION.

The above theorem shows that at time t the heat generated has only penetrated to $y = \eta_2 \sqrt{c}$. This identifies the dissipation layer. The viscosity of the lubricant outside this layer is not affected by heat under the conditions assumed in this problem.

REFERENCES

Special Issue on
Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk