A REPRESENTATION OF BOUNDED COMMUTATIVE BCK-ALGEBRAS

H.A.S. ABUJABAL
Department of Mathematics, Faculty of Science
King Abdul Aziz University, P O Box 31464
Jeddah - 21497, SAUDI ARABIA

M. ASLAM
Department of Mathematics
Quaid-i-Azam University
Islamabad, PAKISTAN

A.B. THAHEEM
Department of Mathematical Sciences
King Fahd University of Petroleum and Minerals
P O Box 469, Dhahran 31261, SAUDI ARABIA

(Received April 26, 1993 and in revised form November 13, 1995)

ABSTRACT. In this note, we prove a representation theorem for bounded commutative BCK-algebras

KEY WORDS AND PHRASES: Bounded commutative BCK-algebra, ideal, prime ideal, quotient BCK-algebras, spectral space

1991 AMS SUBJECT CLASSIFICATION CODES: Primary 06D99, Secondary 54A

1. INTRODUCTION

The representation theory of various algebraic structures has been extensively studied. The corresponding representation theory for BCK-algebras remains to be developed. Rousseau and Thaheem [1] proved a representation theorem for a positive implicative BCK-algebra as BCK-algebra of self-mappings which apparently does not possess many algebraic properties. Cornish [2] constructed a bounded implicative BCK-algebra of multipliers corresponding to a bounded implicative BCK-algebra, but no representation of these algebras has been studied there. The purpose of this note is to prove a representation theorem for a bounded commutative BCK-algebra. We essentially prove that a bounded commutative BCK-algebra X is isomorphic to the bounded commutative BCK-algebra X of mappings acting on the associated spectral space of X. Our approach depends on the theory of quotient BCK-algebras as developed by Iséki and Tanaka [3] and the theory of prime ideals of commutative BCK-algebras. Before we develop our results, we recall some technical preliminaries for the sake of completeness. A BCK-algebra is a system (X, *, 0, ≤) (denoted simply by X), satisfying (i) (x * y) * (x * z) ≤ x * y, (ii) x * (x * y) ≤ y, (iii) x ≤ x, (iv) 0 ≤ x, (v) x ≤ y, y ≤ x imply x = y, where x ≤ y if and only if x /∈ 0 for all x, y ∈ X. If X contains an element 1 such that x ≤ 1 for all x ∈ X, then X is said to be bounded. X is said to be commutative if x * y = y * x for all x, y ∈ X, where x ∧ y = y * (y * x). A non-empty set A of a BCK-algebra X is said to be an ideal of X if 0 ∈ A, x, y ∈ A imply y ∈ A, x * z ∈ A implies x ∈ A or y ∈ A. A proper ideal A of a commutative BCK-algebra X is said to be prime if x * y ∈ A implies x ∈ A or y ∈ A. It is well-known that every maximal ideal in a commutative BCK-
algebra is prime (see e.g. [4]). The theory of prime ideals plays an important role in the study of commutative BCK-algebras. For some information about prime ideals, we refer to [5] which contains further references about the theory of prime ideals. A subset S of a commutative BCK-algebra is said to be \wedge-closed if $x \wedge y \in S$ whenever $x, y \in S$.

We now state the following theorem known as the prime ideal theorem (see [6, Theorem 2.4] and [5, Corollary 3]).

Theorem A. Let I be an ideal and S be a \wedge-closed set of a commutative BCK-algebra X such that $S \cap I = \emptyset$. Then there exists a prime ideal P such that $I \subseteq P$ and $P \cap S = \emptyset$.

Corollary B. Let I be an ideal of a commutative BCK-algebra X and $a \in X$ such that $a \notin I$. Then there exists a prime ideal P such that $a \notin P$ and $I \subseteq P$.

The above corollary follows from Theorem A by choosing $S = \{a\}$. If a non-trivial commutative BCK-algebra and $I = \{0\}$, then Corollary B ensures the existence of a prime ideal in X. We now recall the definition of a quotient BCK-algebra. If X is a BCK-algebra and A is an ideal of X, then we define an equivalence relation \sim on X by $x \sim y$ if and only if $x \star y, y \star x \in A$. Let $C_x = \{y \in X : x \star y, y \star x \in A\}$. Let $C_\emptyset = \{y \in X : x \star y, y \star x \in A\}$ denote the equivalence class containing $x \in X$. Then one can see that $C_0 = A$ and $C_x = C_y$ if and only if $x \sim y$. Let X/A denote the set of all equivalence classes $C_x, x \in X$. Then X/A is a BCK-algebra (known as quotient BCK-algebra) with $C_x \star C_y = C_{x \star y}$, and $C_x \leq C_y$ if and only if $x \star y \in A$, and $C_0 = A$ is the zero of X/A (see for instance [3-7]). If X is bounded commutative, then X/A is also bounded commutative with C_1 as the unit element.

For the general theory of BCK-algebras and other undefined terminology and notations used here, we refer to Iséki and Tanaka [3-7] and Cornish [8].

2. A REPRESENTATION THEOREM

Throughout X denotes a bounded commutative BCK-algebra. Let $\text{Spec}(X)$ denote the set of all prime ideals of X, called the spectrum of X. It has been shown in [5] that $\text{Spec}(X)$ is a compact topological space referred to as the spectral space associated with X. It is well-known that $\bigcap_{P \in \text{Spec}(X)} P = \{0\}$ (see e.g. [8]).

Definition 2.1. For any $x \in X$, we define a mapping

$$\widehat{x} : \text{Spec}(X) \to \bigcup_{P \in \text{Spec}(X)} X/P$$

where $\widehat{x}(P)$ denotes the image of x into X/P.

It is easy to see that $\widehat{x}(P) = C_0$ if and only if $x \in P$.

We denote by \hat{X}, the set of all mappings $\widehat{x}, x \in X$. For any $\widehat{x}, \widehat{y} \in \hat{X}$, we define the following operations on \hat{X}:

$$\widehat{x} \star \widehat{y} = (x \star y) \quad \text{and} \quad \widehat{x} \leq \widehat{y} \quad \text{if and only if} \quad \widehat{x} \star \widehat{y} = \widehat{0}.$$

These operations are well-defined because of the properties of quotient algebras. Indeed, as $\widehat{x}(P)$ is the canonical image of x in X/P, namely the class C_x relative to P, and the union $\bigcup_{P \in \text{Spec}(X)} X/P$ is disjoint.

Routine verifications similar to ones for quotient BCK-algebras (see e.g. [3]) lead to the following.

Proposition 2.2. $(\hat{X}, \star, \widehat{0})$ is a bounded commutative BCK-algebra.

We now prove the following representation result.

Theorem 2.3. The mapping $\phi : x \in X \to \widehat{x} \in \hat{X}$ is an isomorphism.

Proof. That ϕ is surjective homomorphism follows from the definition (because the mapping $x \in X \to C_x \in X/P$ is the canonical homomorphism). To prove that ϕ is injective it is enough to show...
that $\phi(x) = 0$ if and only if $x = 0$. For any $P \in \text{Spec}(X)$, $\phi(x)(P) = 0$ implies that $x \in P$ for all $P \in \text{Spec}(X)$ and hence $x \in \bigcap_{P \in \text{Spec}(X)} P = \{0\}$. Thus $x = 0$. This completes the proof.

We provide an example to explain some essential ideas developed above.

EXAMPLE 2.4 ([3, p 363]) Let $X = \{0, a, b, 1\}$ be a set. Define a binary operation $*$ on X as in Table 1

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1

The $(X, *, 0)$ is a bounded commutative BCK-algebra with $P = \{0, a\}$ and $Q = \{a, b\}$ as prime ideals (cf Table 2).

<table>
<thead>
<tr>
<th>\wedge</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2

Then $\text{Spec}(X) = \{P, Q\}$, $X/P = \{\{0, a\}, \{b, 1\}\}$, $X/Q = \{\{0, b\}, \{a, 1\}\}$, X/P, X/Q, are disjoint and $\bigcup_{P \in \text{Spec}(X)} X/P$ is the disjoint union as defined above. The rest of the calculations can easily be made to get the representation of X in this case.

ACKNOWLEDGMENT. The authors are grateful to the referee for his useful suggestions that led to an improvement of the paper. One of the authors (A. B. Thaheem) thanks K F U P M for providing research facilities.

REFERENCES

Special Issue on
Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklaicityu.edu.hk