The colored Jones polynomial and Kontsevich-Zagier series for double twist knots, II

Jeremy Lovejoy and Robert Osburn

Abstract. Let $K_{(m,p)}$ denote the family of double twist knots where $2m-1$ and $2p$ are non-zero integers denoting the number of half-twists in each region. Using a result of Takata, we prove a formula for the colored Jones polynomial of $K_{(-m,-p)}$ and $K_{(-m,p)}$. The latter case leads to new families of q-hypergeometric series generalizing the Kontsevich-Zagier series. These generalized Kontsevich-Zagier series are conjectured to be quantum modular forms. We also use Bailey pairs and formulas of Walsh to find Habiro-type expansions for the colored Jones polynomials of $K_{(m,p)}$ and $K_{(m,-p)}$.

Contents

1. Introduction 1312
2. Preliminaries 1318
3. Proof of Theorem 1.1 1327
4. Proof of Theorem 1.2 1336
5. Proof of Theorem 1.3 1343
6. Concluding remarks 1346
Acknowledgements 1346
References 1346

1. Introduction

Let K be a knot and $J_N(K; q)$ be the usual Nth colored Jones polynomial, normalized to be 1 for the unknot. Formulas for $J_N(K; q)$ in terms of q-hypergeometric series have been proved for several families of knots [14, 16, 17, 23, 26, 32]; these have played a prominent role in numerous studies in quantum topology and modular forms [6, 13, 18, 19, 20, 21, 35]. In recent work [24], the authors used a theorem of Takata [30] to find q-hypergeometric expressions for the colored Jones polynomial of double twist knots where

Received April 5, 2019.
2010 Mathematics Subject Classification. 33D15, 57M27.
Key words and phrases. double twist knots, colored Jones polynomial.
each of the two regions consisted of an even number of half-twists. This led to a doubly infinite family of q-series generalizing the famous Kontsevich-Zagier series [34, 35],

$$F(q) = \sum_{n \geq 0} (1 - q)(1 - q^2) \cdots (1 - q^n). \quad (1.1)$$

These generalized Kontsevich-Zagier series are conjectured to be new families of quantum modular forms. Comparing with previously known expressions for the colored Jones polynomials of double twist knots due to Lauridsen [22] led to generalizations of a q-series “identity” involving $F(q)$ due to Bryson, Ono, Pitman, and Rhoades [7] – namely, for any root of unity q one has

$$F(q^{-1}) = \sum_{n \geq 0} q^{n+1}(1 - q)^2 \cdots (1 - q^n)^2. \quad (1.2)$$

For a complete description of these results, see [24].

Here we turn our attention to double twist knots where one region has an odd number of half-twists. Recall the standard q-hypergeometric notation

$$(a)_n = (a; q)_n := \prod_{k=0}^{n-1} (1 - aq^k)$$

and the usual q-binomial coefficient

$$\left[\begin{array}{c} n \\ k \end{array} \right]_q = \left[\begin{array}{c} n \\ k \end{array} \right] := \frac{(q)_n}{(q)_{n-k}(q)_k}. \quad (1.3)$$

Consider the family of double twist knots $K_{(m,p)}$ where $2m - 1$ and $2p$ are non-zero integers denoting the number of half-twists in each respective region of Figure 1. Positive integers correspond to right-handed half-twists and negative integers correspond to left-handed half-twists.

![Figure 1. Double twist knots](image-url)
To state the case $K_{(-m,-p)}$, we define the functions $\epsilon_{i,j,m}$ and $\gamma_{i,m}$ by

$$
\epsilon_{i,j,m} = \begin{cases}
1, & \text{if } j \equiv -i \text{ or } -i - 1 \pmod{2m+1}, \\
-1, & \text{if } j \equiv i \text{ or } i - 1 \pmod{2m+1}, \\
0, & \text{otherwise}
\end{cases} \tag{1.4}
$$

$$
\gamma_{i,m} = \begin{cases}
1, & \text{if } i \equiv 1, \ldots, m-1 \pmod{2m+1}, \\
-1 & \text{if } i \equiv 0, m+1, \ldots, 2m \pmod{2m+1}, \\
0 & \text{if } i \equiv m \pmod{2m+1}
\end{cases} \tag{1.5}
$$

where $1 \leq i < j \leq (2m+1)p-1$ with $(2m+1) \nmid i$ and $j \neq m \pmod{2m+1}$ and

Our first main result is the following.

Theorem 1.1. For positive integers m and p, we have

$$
J_N(K_{(-m,-p)}; q) = q^{(p-1)(N-1)} \sum_{N-1 \geq n_1 \geq n_2 \geq \ldots \geq n_{m+1} \geq 0} (q^{1-N})^n (2m+1)^{p-1}
\times (-1)^n (2m+1)^{p-1} q^{-(n_1+1)} \prod_{1 \leq i < j \leq (2m+1)p-1 \atop j \neq m \pmod{2m+1}} q^{\epsilon_{i,j,m} n_i n_j}
\times \prod_{i=1}^{(2m+1)p-2} (1-1) q^{n_i n_i + \gamma_{i,m} n_i \left[n_i + 1 \atop n_i \right]} \tag{1.6}
$$

For an example of Theorem 1.1, take $m = 3$ and $p = 1$. We then have

$$
J_N(K_{(-3,-1)}; q) = \sum_{N-1 \geq n_6 \geq n_5 \geq n_4 \geq n_3 \geq n_2 \geq n_1 \geq 0} (q^{1-N})^{n_6}
\times (-1)^{n_3+n_6} q^{n_3+\left(n_3+1 \atop 2 \right) - \left(n_6+1 \atop 2 \right)}
\times q^{n_1(n_5+n_6)+n_2(n_4+n_5)-n_1 n_2 - n_2 n_3 - n_4 n_5 - n_5 n_6}
\times q^{n_1+n_2-n_4-n_5} \left[n_6 \atop n_5 \right] \left[n_4 \atop n_3 \right] \left[n_3 \atop n_2 \right] \left[n_2 \atop n_1 \right].
$$

For the case of $K_{(-m,p)}$, define the functions $\Delta_{i,j,m}$ and $\beta_{i,m}$ by

$$
\Delta_{i,j,m} = \begin{cases}
1, & \text{if } j \equiv -i \text{ or } -i + 1 \pmod{2m+1}, \\
-1, & \text{if } j \equiv i \text{ or } i + 1 \pmod{2m+1}, \\
0, & \text{otherwise}
\end{cases} \tag{1.7}
$$
where $1 \leq i < j \leq (2m+1)p$ with $(2m+1) \nmid i$ and $j \not\equiv m+1 \pmod{2m+1}$ and
\[
\beta_{i,m} = \begin{cases}
1, & \text{if } i \equiv 1, \ldots, m \pmod{2m+1}, \\
-1, & \text{if } i \equiv m+1, \ldots, 2m \pmod{2m+1}, \\
0, & \text{if } i \equiv 0 \pmod{2m+1}
\end{cases} \quad (1.8)
\]
where $1 \leq i \leq (2m+1)p-1$. For convenience, we define $\beta_{i,0} = 0$ for $1 \leq i \leq p-1$. Our second main result is the following.

Theorem 1.2. For a nonnegative integer m and positive integer p, we have
\[
J_N(K(-m,p); q) = q^{p(1-N)} \sum_{N-1 \geq n_1 \geq \cdots \geq n_1 \geq 0} (q^{1-N})_{n_1(2m+1)p}(-1)^{n_1(2m+1)p}q^{-\binom{n(2m+1)+1}{2}}
\]
\[
\times \prod_{1 \leq i < j \leq (2m+1)p \atop j \not\equiv m+1 \pmod{2m+1}} q^{\Delta_{i,j,m,n_i,n_j}} \prod_{i=m+1, 2m+1 \pmod{2m+1}} (-1)^{n_{i-1}} q^{-N_{n_i} + \binom{n_i+1}{2}}
\]
\[
\times \prod_{i=1}^{(2m+1)p-1} q^{\beta_{i,m,n_i}} \left\lfloor \frac{n_i+1}{n_i} \right\rfloor . \quad (1.9)
\]

The case $m = 0$ of Theorem 1.2 was proved by Hikami [16]. Here $K_{(0,p)} = T_{(2,2p+1)}$, the family of right-handed torus knots. Thus, one recovers $J_N(T_{(2,2p+1)}; q)$ by taking $m = 0$ in (1.9). To see this, we first rewrite (1.9) as
\[
J_N(K(-m,p); q) = q^{p(1-N)} \sum_{N-1 \geq n_1 \geq \cdots \geq n_1 \geq 0} (q^{1-N})_{n_1(2m+1)p}q^N n_{n_1(2m+1)p} q^{-2\binom{n(2m+1)+1}{2}}
\]
\[
\times \prod_{1 \leq i < j \leq (2m+1)p \atop j \not\equiv m+1 \pmod{2m+1}} q^{\Delta_{i,j,m,n_i,n_j}} \prod_{i=m+1, 2m+1 \pmod{2m+1}} (-1)^{n_{i-1}} q^{-N_{n_i} + \binom{n_i+1}{2}}
\]
\[
\times \prod_{i=1}^{(2m+1)p-1} (-1)^{n_{i-1}} q^{-N_{n_i} + \binom{n_i+1}{2}} \prod_{i=2m+1 \pmod{2m+1}} q^{\beta_{i,m,n_i}} \left\lfloor \frac{n_i+1}{n_i} \right\rfloor . \quad (1.10)
\]

For $m = 0$, the first product in (1.10) is empty while the second and third products in (1.10) are equal. Taking $\beta_{i,0} = 0$ in (1.8), we have (cf. Proposition 9 in [16])
For another example of Theorem 1.2, consider \(m = p = 2 \). We then have

\[
J_N(K_{(-2,2)}; q) = q^{2(1-N)} \sum_{N \geq n_{10} \geq n_9 \geq n_8 \geq n_7 \geq n_6 \geq n_5 \geq n_4 \geq n_3 \geq n_2 \geq n_1 \geq 0} (q^{1-N})_{n_{10}} \times (-1)^{n_3 + n_5 + n_7} q^{-N(n_3 + n_5 + n_7)} \times \prod_{i=1}^{p-1} q^{n_i(n_i+1-2N)} \left[\frac{n_{i+1}}{n_i} \right].
\]

(1.11)

For another example of Theorem 1.2, consider \(m = p = 2 \). We then have

\[
J_N(K_{(-2,2)}; q) = q^{2(1-N)} \sum_{N \geq n_{10} \geq n_9 \geq n_8 \geq n_7 \geq n_6 \geq n_5 \geq n_4 \geq n_3 \geq n_2 \geq n_1 \geq 0} (q^{1-N})_{n_{10}} \times (-1)^{n_3 + n_5 + n_7} q^{-N(n_3 + n_5 + n_7)} \times \prod_{i=1}^{p-1} q^{n_i(n_i+1-2N)} \left[\frac{n_{i+1}}{n_i} \right].
\]

Recall that

\[
J_N(K; q^{-1}) = J_N(K^*; q),
\]

where \(K^* \) denotes the mirror image of the knot \(K \). Thus, since \(K_{(-m,-p)} \) is the mirror image of \(K_{(m+1,p)} \) and \(K_{(0,p-1)} \) is the mirror image of \(K_{(0,-p)} \), equations (1.6) and (1.9) cover all of the double twist knots in this family, up to a substitution of \(q \) by \(q^{-1} \). Combined with Theorems 1.1 and 1.2 in [24], we have \(q \)-hypergeometric series expressions of this type for all double twist knots.

Another type of \(q \)-hypergeometric formula for the colored Jones polynomial can be deduced from formulas of Walsh [32] together with the theory of Bailey pairs. These formulas are our third main result.

Theorem 1.3. For positive integers \(m \) and \(p \), we have

\[
J_N(K_{(m,p)}; q) = q^{p(1-N^2)} \sum_{n \geq 0} \frac{(q^{1+N})_n(q^{1-N})_n q^n}{(q)_n} \times \prod_{i=1}^{m-1} q^{n_i^2+n_i} \left[\frac{n_{i+1}}{n_i} \right] \times \prod_{j=1}^{s} q^{s_j^2+s_j} \left[\frac{s_{j+1}}{s_j} \right].
\]

(1.13)
\[q^{-p(1-N^2)} \sum_{n \geq 0} \frac{(q^{1+N})^n(q^{1-N})^n(-1)^n q^{-n\binom{n+1}{2}}}{(q)_{n_1}}\]
\[\times \prod_{i=1}^{m-1} q^{n_i^2+n_i} \left[\frac{n_i+1}{n_i} \right] \prod_{j=1}^{p-1} q^{-s_j-s_{j+1}+s_{j}} \left[\frac{s_{j+1}}{s_j} \right]. \tag{1.14}\]

In view of (1.9) and (1.14), we define the \(q\)-series \(F_{m,p}(q)\) for \(m \geq 0\) and \(p \geq 1\) and \(U_{m,p}(x; q)\) for \(m, p \geq 1\) by

\[F_{m,p}(q) = q^p \sum_{n=0}^{\infty} \frac{q^{n(2m+1)p}(-1)^n q^{-\binom{n+1}{2}}}{q^{(2m+1)p-1} \prod_{1 \leq i < j \leq (2m+1)p \atop j \neq m+1 \text{ (mod } 2m+1)} \prod_{i=m+1, 2m+1 \text{ (mod } 2m+1)} q^{\Delta_{i,j,m,n_i,n_j}} q^{\beta_{i,m,n_i} n_i+1} \left[\frac{n_i+1}{n_i} \right] \tag{1.15}\]

and

\[U_{m,p}(x; q) = q^{-p} \sum_{n=0}^{\infty} \frac{(-x)^n(-x^{-1})^n q^{-n\binom{n+1}{2}}}{(q)_{n_1}}\]
\[\times \prod_{i=1}^{m-1} q^{n_i^2+n_i} \left[\frac{n_i+1}{n_i} \right] \prod_{j=1}^{p-1} q^{-s_j-s_{j+1}+s_{j}} \left[\frac{s_{j+1}}{s_j} \right]. \tag{1.16}\]

Note that neither \(F_{m,p}(q)\) nor \(U_{m,p}(x; q)\) is defined anywhere except at roots of unity. In this case, we have

\[F_{m,p}(\zeta_N) = J_N(K_{(-m,p)}; \zeta_N) \tag{1.17}\]

and

\[U_{m,p}(-1; \zeta_N) = J_N(K_{(-m,p)}; \zeta_N) \tag{1.18}\]

for any \(N\)th root of unity \(\zeta_N\). By (1.12), (1.17) and (1.18) and since the mirror image of \(K_{(-m,p)}\) is \(K_{(m+1,-p)}\), we immediately have the following.

Corollary 1.4. If \(\zeta_N\) is any root \(N\)th root of unity, then we have

\[F_{m,p}(\zeta_N) = U_{m+1,p}(-1; \zeta_N^{-1}). \tag{1.19}\]

Similar “dualities” involving \(q\)-hypergeometric series at roots of unity can be found in \([7, 9, 10, 20, 24]\). As the case \(F_{0,1}(q)\) is equal to \(q\) times the Kontsevich-Zagier series (1.1), we refer to the \(q\)-series \(F_{m,p}(q)\) as the Kontsevich-Zagier series for odd double twist knots.
Similarly, motivated by (1.6) and (1.13), we define the q-series $F_{m,p}(q)$ and $U_{m,p}(x;q)$ for $m, p \geq 1$ by

$$F_{m,p}(q) = q^{1-p} \sum_{n(2m+1)p-1 \geq \cdots \geq n_1 \geq 0} (q)^{n(2m+1)p-1} (-1)^{n(2m+1)p-1} q^{-(n(2m+1)p-1+1)}$$

$$\times \prod_{1 \leq i < j \leq (2m+1)p-1, \ (2m+1) \mid i} q^{\sigma_{i,j,m,n_{i},n_{j}}} \prod_{i=m, 2m+1 \ (\mod 2m+1)} (-1)^{n_{i}} q^{n_{i}+1} (2m+1)p-2$$

$$\times \prod_{i=1}^{(2m+1)p-2} q^{-n_{i}n_{i+1}+\gamma_{i,m,n_{i}}} \left[n_{i+1} \right]_{n_{i}} \ (1.20)$$

and

$$U_{m,p}(x;q) = q^{p} \sum_{n \geq 0} \frac{(-x)^{n} (-x^{-1})^{n} q^{n}}{(q)^{n_{1}}}$$

$$\times \prod_{i=1}^{m} q^{m_{i}+n_{i}} \left[n_{i+1} \right]_{n_{i}} \prod_{j=1}^{p-1} q^{2j+1} \left[s_{j+1} \right]_{s_{j}} \ (1.21)$$

Here, $U_{m,p}(x;q)$ is well-defined for $|q| < 1$ and for q a root of unity when $x = -1$ while $F_{m,p}(q)$ is only defined at roots of unity. Then

$$F_{m,p}(\zeta_N) = J_N(K_{(-m,-p)}; \zeta_N)$$

(1.22)

and

$$U_{m,p}(-1; \zeta_N) = J_N(K_{(-m,p)}; \zeta_N)$$

(1.23)

for any Nth root of unity ζ_N, giving the following.

Corollary 1.5. If ζ_N is any root Nth root of unity, then we have

$$F_{m,p}(\zeta_N) = U_{m+1,p}(-1; \zeta_N^{-1})$$

(1.24)

The rest of this paper is organized as follows. In Section 2, we recall Takata's main theorem and provide some preliminaries. In Sections 3 and 4, we prove Theorems 1.1 and 1.2. In Section 5, we prove Theorem 1.3. In Section 6, we conclude with some remarks.

2. Preliminaries

We begin by recalling the setup from [30]. Let l and t be coprime odd integers with $l > t \geq 1$ and $p' := \frac{l-1}{2}$. For $1 \leq j \leq p'$, define integers $r(j)$ such that $r(j) \equiv (2j-1)t \ (\mod 2l)$ and $-l < r(j) < l$. We put $\sigma_{j} := (-1)^{\frac{(2j-1)r(j)}{2}}, r'(j) := \frac{r(j)+1}{2}$ and $i_{r'(j)} = j$ (and thus $i_{k} = j$ if...
and only if \(r'(j) = k \). For an integer \(i \), \(\text{sgn}(i) \) denotes the sign of \(i \). Let \(\mathbf{n} = (n_1, \ldots, n_{p'}) \) and \(n_s = 0 \) for \(s \leq 0 \). Finally, define

\[
\kappa(p') = \begin{cases}
-Nn_{p'} & \text{if } \sigma_{p'} = -1, \\
0 & \text{if } \sigma_{p'} = 1
\end{cases} \tag{2.1}
\]

and

\[
\tau(j) = \begin{cases}
(-1)^{n_j-n_{j-1}} & \text{if } \sigma_j = -1, \\
q^{n_j-n_{j-1}+1} & \text{if } \sigma_j = 1.
\end{cases} \tag{2.2}
\]

Consider the family of 2-bridge knots \(b(l,t) \) (see \cite{8} or \cite{25}). The main result in \cite{30} is an explicit formula for the colored Jones polynomial of \(b(l,t)^* \).

Theorem 2.1. We have

\[
J_N(b(l,t)^*; q) = \sum_{N-1 \geq n_{p'} \geq \ldots \geq n_1 \geq 0} q^{a(n)N+b_1(n)+b_2(n)} X(n) \tag{2.3}
\]

where\(^1\)

\[
a(n) = -\frac{1}{2} \sum_{j=1}^{p'} \left(\sum_{k=r'(j)} (\sigma_{i_k} + \sigma_{i_{p'+1}-k}) \right) (n_j - n_{j-1}) \]

\[
- \frac{1}{2} \sum_{j=1}^{p'-1} (\sigma_{j+1} + \sigma_{p'+1-j}) n_j - \frac{1}{2} (\sigma_{p'} + 1)n_{p'} - \sum_{j=1}^{p'} \sigma_j,
\]

\[
b_1(n) = -a(n) + \sum_{k=1}^{l+2} \frac{1}{2} - \sigma_{i_k} n_{i_{k-1}} - \sum_{k=\frac{l+4}{2}}^{p'} n_{i_{k-1}} + \sum_{k=\frac{l+4}{2}}^{p'} \frac{1}{2} \sigma_{i_k} n_{i_k}
\]

\[
- (1 + \sigma_{p'}) n_{p'} + \frac{1}{2} \sum_{j=1}^{p'-1} (\sigma_{j+1} - \sigma_j)n_j
\]

\[
- \frac{1}{2} \sum_{k=1}^{p'-1} \sum_{k'=k+1}^{p'} \frac{1 + \text{sgn}(i_k - i_{k'})}{2} (\sigma_{i_k} - \sigma_{i_{k'}})(n_{i_{k}} - n_{i_{k-1}})(n_{i_{k'}} - n_{i_{k'}-1})
\]

\[
+ \sum_{j=1}^{p'} \sigma_j \left(\sum_{k=1}^{r'(j)} (n_{i_k} - n_{i_{k-1}}) \right) n_{j-1},
\]

\(^1\)Note that there is a misprint in the definition of \(X(n) \) in \cite{30}. Each \(\bar{n} \) in the prefactor should be \(q \).
Our interest will be to apply Theorem 2.1 to the case of the double twist knots $K_{(m+1,p)} = b(4mp + 2p - 1, 4mp - 1)$ and $K_{(m+1,-p)} = b(4mp + 2p + 1, 4mp + 1)$, whose mirror images are $K_{(-m,-p)}$ and $K_{(-m,p)}$, respectively (cf. [31]). In order to facilitate these computations, we need the following results concerning σ_j, i_k and σ_{i_k}. We omit the proofs as they are straightforward generalizations of Lemmas 6–9 in [30].

Lemma 2.2. For $l = 4mp + 2p - 1$ and $t = 4mp - 1$, we have

(i) $\sigma_j = \begin{cases} 1 & \text{if } j \equiv 1, 2, \ldots, m \pmod{2m+1}, \\ -1 & \text{if } j \equiv 0, m + 1, \ldots, 2m \pmod{2m+1}. \end{cases}$

(ii) To compute i_k, apply the following algorithm. Divide the integers from 1 to p' into $2m$ intervals, each of length p, and a final interval of length $p-1$. The value of i_k is $(2m+1)(k-1) + m + 1$ in the first interval and $(2m+1)(2p-k) + m$ in the second. If $j > 1$ is odd, then to obtain the value of i_k in the jth interval, subtract $2(2m+1)p - 1$ from the formula for i_k in the $(j-2)$th interval. If $j > 2$ is even, then to obtain the value of i_k in the jth interval, add $2(2m+1)p - 1$ to the formula for i_k in the $(j-2)$th interval.

(iii) To compute σ_{i_k}, apply the following algorithm. Divide the integers from 1 to p' into $2m$ intervals, each of length p, and a final interval of length $p-1$. The value of σ_{i_k} alternates between -1 and 1 starting with -1 in the first interval.

Lemma 2.3. Let $l = 4mp + 2p - 1$ and $t = 4mp - 1$. Then for $1 \leq k \leq p'$ and $1 \leq j \leq p' - 1$ we have
THE COLORED JONES POLYNOMIAL FOR DOUBLE TWIST KNOTS, II 1321

\[
(i) \quad \sigma_{ik} + \sigma_{ip'+1-k} = \begin{cases}
2 & \text{if } ip + 1 \leq k \leq (i + 1)p - 1 \\
& \text{for } i = 1, 3, \ldots, 2m - 1, \\
-2 & \text{if } ip + 1 \leq k \leq (i + 1)p - 1 \\
& \text{for } i = 0, 2, \ldots, 2m, \\
0 & \text{if } k = ip \text{ for } i = 1, 2, \ldots, 2m.
\end{cases}
\]

\[
(ii) \quad \sigma_{j+1} + \sigma_{p'+1-j} = \begin{cases}
-2 & \text{if } j \equiv m \pmod{2m+1}, \\
0 & \text{otherwise}.
\end{cases}
\]

Lemma 2.4. For \(l = 4mp + 2p + 1\) and \(t = 4mp + 1\), we have

\[
(i) \quad \sigma_j = \begin{cases}
1 & \text{if } j \equiv 1, 2, \ldots, m + 1 \pmod{2m + 1}, \\
-1 & \text{if } j \equiv 0, m + 2, \ldots, 2m \pmod{2m + 1}.
\end{cases}
\]

(ii) To compute \(i_k\), apply the following algorithm. Divide the integers from 1 to \(p'\) into \(2m+1\) intervals, each of length \(p\). The value of \(i_k\) is \((2m+1)(k-1)+m+1\) in the first interval and \((2m+1)(2p-k)+m+2\) in the second. If \(j > 1\) is odd, then to obtain the value of \(i_k\) in the \(j\)th interval, subtract \(2(2m+1)p+1\) from the formula for \(i_k\) in the \((j-2)\)th interval. If \(j > 2\) is even, then to obtain the value of \(i_k\) in the \(j\)th interval, add \(2(2m+1)p+1\) to the formula for \(i_k\) in the \((j-2)\)th interval.

(iii) To compute \(\sigma_{ik}\), apply the following algorithm. Divide the integers from 1 to \(p'\) into \(2m+1\) intervals, each of length \(p\). The value of \(\sigma_{ik}\) alternates between 1 and -1 starting with 1 in the first interval.

Lemma 2.5. Let \(l = 4mp + 2p + 1\) and \(t = 4mp + 1\). Then for \(1 \leq k \leq p'\) and \(1 \leq j \leq p' - 1\) we have

\[
(i) \quad \sigma_{ik} + \sigma_{ip'+1-k} = \begin{cases}
2 & \text{if } ip + 1 \leq k \leq (i + 1)p \\
& \text{for } i = 0, 2, \ldots, 2m, \\
-2 & \text{if } ip + 1 \leq k \leq (i + 1)p \\
& \text{for } i = 1, 3, \ldots, 2m - 1.
\end{cases}
\]

\[
(ii) \quad \sigma_{j+1} + \sigma_{p'+1-j} = \begin{cases}
2 & \text{if } j \equiv 0 \pmod{2m + 1}, \\
0 & \text{otherwise}.
\end{cases}
\]

We now illustrate the computation of \(a(n)\) and \(b_1(n) + b_2(n)\) for \(l = 10p + 1\) and \(t = 8p + 1\). The routine evaluation of \(X(n)\) is left to the reader. First, we take \(m = 2\) in Lemmas 2.4 and 2.5 to obtain
\[
\sigma_j = \begin{cases}
1 & \text{if } j \equiv 1, 2, 3 \pmod{5}, \\
-1 & \text{if } j \equiv 0, 4 \pmod{5},
\end{cases} \tag{2.4}
\]

\[
i_k = \begin{cases}
5(k - 1) + 3 & \text{if } 1 \leq k \leq p, \\
5(2p - k) + 4 & \text{if } p + 1 \leq k \leq 2p, \\
5k - 10p - 3 & \text{if } 2p + 1 \leq k \leq 3p, \\
20p - 5k + 5 & \text{if } 3p + 1 \leq k \leq 4p, \\
5k - 20p - 4 & \text{if } 4p + 1 \leq k \leq 5p,
\end{cases} \tag{2.5}
\]

\[
\sigma_{i_k} = \begin{cases}
1 & \text{if } 1 \leq k \leq p, \\
-1 & \text{if } p + 1 \leq k \leq 2p, \\
1 & \text{if } 2p + 1 \leq k \leq 3p, \\
-1 & \text{if } 3p + 1 \leq k \leq 4p, \\
1 & \text{if } 4p + 1 \leq k \leq 5p,
\end{cases} \tag{2.6}
\]

\[
\sigma_{i_k} + \sigma_{i_{5p+1-k}} = \begin{cases}
2 & \text{if } 1 \leq k \leq p, \\
-2 & \text{if } p + 1 \leq k \leq 2p, \\
2 & \text{if } 2p + 1 \leq k \leq 3p, \\
-2 & \text{if } 3p + 1 \leq k \leq 4p, \\
2 & \text{if } 4p + 1 \leq k \leq 5p,
\end{cases} \tag{2.7}
\]

and

\[
\sigma_{j+1} + \sigma_{5p+1-j} = \begin{cases}
2 & \text{if } j \equiv 0 \pmod{5}, \\
0 & \text{otherwise.} \tag{2.8}
\end{cases}
\]

Applying (2.4), (2.5), (2.7), (2.8), reindexing and after considerable simplification, we obtain that \(a(n) \) equals

\[
-\frac{1}{2} \sum_{j=1}^{5p} \left(\sum_{k=r'(j)}^{5p} (\sigma_{i_k} + \sigma_{i_{5p+1-k}}) \right) (n_j - n_{j-1}) - \sum_{j=1}^{p-1} n_{5j} - p
\]

\[
= -\frac{1}{2} \left[\sum_{j=1}^{p} \left(\sum_{k=4p-j+1}^{5p} (\sigma_{i_k} + \sigma_{i_{5p+1-k}}) \right) (n_{5j} - n_{5j-1}) + \sum_{j=1}^{p} \left(\sum_{k=4p+j}^{5p} (\sigma_{i_k} + \sigma_{i_{5p+1-k}}) \right) (n_{5j} - 4n_{5j-5}) + \sum_{j=1}^{p} \left(\sum_{k=2p+j}^{5p} (\sigma_{i_k} + \sigma_{i_{5p+1-k}}) \right) (n_{5j} - 3n_{5j-4}) + \sum_{j=1}^{p} \left(\sum_{k=j}^{5p} (\sigma_{i_k} + \sigma_{i_{5p+1-k}}) \right) (n_{5j} - 2n_{5j-3}) + \sum_{j=1}^{p} \left(\sum_{k=2p-j+1}^{5p} (\sigma_{i_k} + \sigma_{i_{5p+1-k}}) \right) (n_{5j-1} - n_{5j-2}) \right]
\]
By \((2.4)\) and \((2.6)\), the second and fifth sums in \(b_1(n)\) are zero. We then use \((2.4)-(2.6)\) and reindex to obtain

\[
- \sum_{k=p+1}^{p-1} n_{ik-1} = - \left(\sum_{k=p+1}^{2p} n_{ik-1} + \sum_{k=2p+1}^{3p} n_{ik-1} + \sum_{k=3p+1}^{4p} n_{ik-1} + \sum_{k=4p+1}^{5p} n_{ik-1} \right),
\]

\[
= - \left(\sum_{j=1}^{p} \left(n_{5j-2} + n_{5j-4} + n_{5j-1} + n_{5j-5} \right) \right),
\]

\[
= \sum_{k=p+1}^{5p} \frac{1 + \sigma_{ik}}{2} n_{ik} = \sum_{k=2p+1}^{3p} n_{ik} + \sum_{k=4p+1}^{5p} n_{ik} = \sum_{j=1}^{p-1} n_{5j} - \sum_{j=1}^{p} n_{5j-2}
\]

and

\[
b_2(n) = \sum_{k=p+1}^{4p} \frac{1 + \sigma_{ik}}{2} n_{ik-1} = \sum_{k=2p+1}^{3p} n_{ik-1} = \sum_{j=1}^{p} n_{5j-4}.
\]

By \((2.9)-(2.13)\), the sum of \(b_2(n)\) and the first six terms in \(b_1(n)\) equals

\[
p + \sum_{j=1}^{p-1} n_{5j} + \sum_{j=1}^{p} \left(n_{5j-4} + n_{5j-3} - n_{5j-2} - n_{5j-1} \right).
\]

To compute the seventh term in \(b_1(n)\), we use \((2.5)\) and \((2.6)\) to observe that \(k < k'\) and \(\sigma_{ik} \neq \sigma_{ik'}\) if and only if either \(1 \leq k \leq p\) and \(p + 1 \leq k' \leq 2p\) or \(1 \leq k \leq p\) and \(3p + 1 \leq k' \leq 4p\) or \(p + 1 \leq k \leq 2p\) and \(2p + 1 \leq k' \leq 3p\) or \(p + 1 \leq k \leq 2p\) and \(4p + 1 \leq k' \leq 5p\) or \(2p + 1 \leq k \leq 3p\) and \(3p + 1 \leq k' \leq 4p\) or \(3p + 1 \leq k \leq 4p\) and \(4p + 1 \leq k' \leq 5p\). Also, \(\text{sgn}(i_k - i_{k'}) = 1\) if and only if \(i_k > i_{k'}\) and either \(i_k = 5k - 2\) for \(1 \leq k \leq p\) and \(i_{k'} = 10p - 5k' + 4\) for \(p_1 + 1 \leq k' \leq 2p\) or \(i_k = 5k - 2\) for \(1 \leq k \leq p\) and \(i_{k'} = 20p - 5k + 5\) for \(3p + 1 \leq k \leq 4p\) or \(i_k = 20p - 5k + 4\) for \(p + 1 \leq k \leq 2p\) or \(i_{k'} = 5k' - 10p - 3\) for \(2p + 1 \leq k' \leq 3p\) or \(i_k = 20p - 5k + 4\) for \(p + 1 \leq k \leq 2p\) and \(i_{k'} = 5k' - 20p - 4\) for \(4p + 1 \leq k \leq 5p\) or \(i_k = 5k - 10p - 3\) for \(2p + 1 \leq k \leq 4p\) or \(i_{k'} = 20p - 5k + 5\) for \(3p + 1 \leq k \leq 4p\) or \(i_k = 20p - 5k + 5\) for \(3p + 1 \leq k \leq 4p\) or \(i_{k'} = 5k' - 20p - 4\) for \(4p + 1 \leq k \leq 5p\). Taking these cases into account and reindexing, we have
\[
- \frac{1}{2} \sum_{k=1}^{5p-1} \sum_{k'=k+1}^{5p} \frac{1 + \text{sgn}(i_k - i_{k'})}{2} (\sigma_{i_k} - \sigma_{i_{k'}})(n_{i_k} - n_{i_{k'-1}})(n_{i_{k'}} - n_{i_{k'-1}})
\]

\[
= - \sum_{k=1}^{p} \sum_{k'=2p-k+2}^{2p} (n_{i_k} - n_{i_{k'-1}})(n_{i_{k'}} - n_{i_{k'-1}})
\]

\[
- \sum_{k=1}^{p} \sum_{k'=4p-k+2}^{4p} (n_{i_k} - n_{i_{k'-1}})(n_{i_{k'}} - n_{i_{k'-1}})
\]

\[
+ \sum_{k=p+1}^{2p} \sum_{k'=2p+1}^{6p-k+1} (n_{i_k} - n_{i_{k'-1}})(n_{i_{k'}} - n_{i_{k'-1}})
\]

\[
+ \sum_{k=p+1}^{2p+1} \sum_{k'=4p+1}^{6p-k+1} (n_{i_k} - n_{i_{k'-1}})(n_{i_{k'}} - n_{i_{k'-1}})
\]

\[
- \sum_{k=2p+1}^{3p} \sum_{k'=6p-k+2}^{8p-k+1} (n_{i_k} - n_{i_{k'-1}})(n_{i_{k'}} - n_{i_{k'-1}})
\]

\[
+ \sum_{k=3p+1}^{5p} \sum_{k'=8p-k+1}^{4p+1} (n_{i_k} - n_{i_{k'-1}})(n_{i_{k'}} - n_{i_{k'-1}})
\]

\[
= - \sum_{j=1}^{p} \sum_{j'=1}^{5} (n_{5j-2} - n_{5j-3})(n_{5j'-6} - n_{5j'-7})
\]

\[
- \sum_{j=1}^{p} \sum_{j'=1}^{5} (n_{5j-2} - n_{5j-3})(n_{5j'-5} - n_{5j'-6})
\]

\[
+ \sum_{j=1}^{p} \sum_{j'=1}^{5} (n_{5j-1} - n_{5j-2})(n_{5j'-3} - n_{5j'-4})
\]

\[
+ \sum_{j=1}^{p} \sum_{j'=1}^{5} (n_{5j-1} - n_{5j-2})(n_{5j'-4} - n_{5j'-5})
\]

\[
- \sum_{j=1}^{p} \sum_{j'=1}^{5} (n_{5j-3} - n_{5j-4})(n_{5j'-5} - n_{5j'-6})
\]

\[
+ \sum_{j=1}^{p} \sum_{j'=1}^{5} (n_{5j} - n_{5j-1})(n_{5j'-4} - n_{5j'-5})
\]

Finally, using (2.4) and (2.5), then reindexing and simplifying gives the eighth term in $b_1(\underline{n})$,

(2.15)
\[
\sum_{j=1}^{5p} \sigma_j \left(\sum_{k=1}^{r'(j)} (n_{i_k} - n_{i_k-1}) \right) n_j - 1 \\
= \sum_{j=1}^{p} \sigma_{5j-4} \left(\sum_{k=1}^{4p+j} (n_{i_k} - n_{i_k-1}) \right) n_{5j-5} + \sum_{j=1}^{p} \sigma_{5j-4} \left(\sum_{k=1}^{2p+j} (n_{i_k} - n_{i_k-1}) \right) n_{5j-4} \\
+ \sum_{j=1}^{p-1} \sigma_{5j-2} \left(\sum_{k=1}^{j} (n_{i_k} - n_{i_k-1}) \right) n_{5j-3} + \sum_{j=1}^{p} \sigma_{5j} \left(\sum_{k=1}^{4p-j+1} (n_{i_k} - n_{i_k-1}) \right) n_{5j-1} \\
+ \sum_{j=1}^{p} \sigma_{5j-1} \left(\sum_{k=1}^{2p-j+1} (n_{i_k} - n_{i_k-1}) \right) n_{5j-2} \\
= \sum_{j=1}^{p} \left(\sum_{k=1}^{3p} (n_{5k-2} - n_{5k-3}) + \sum_{k=p+1}^{2p} (n_{10p-5k+4} - n_{10p-5k+3}) \right) \\
+ \sum_{k=2p+1}^{3p} (n_{5k-10p-3} - n_{5k-10p-4}) + \sum_{k=3p+1}^{4p+j} (n_{20p-5k+5} - n_{20p-5k+4}) \\
+ \sum_{k=4p+1}^{4p+j} (n_{5k-20p-4} - n_{5k-20p-5}) n_{5j-5} \\
+ \sum_{j=1}^{p} \left(\sum_{k=1}^{2p+j} (n_{5k-10p-3} - n_{5k-10p-4}) \right) n_{5j-4} + \sum_{j=1}^{p} \left(\sum_{k=1}^{j} (n_{5k-2} - n_{5k-3}) \right) n_{5j-3} \\
- \sum_{j=1}^{p} \left(\sum_{k=1}^{p} (n_{5k-2} - n_{5k-3}) + \sum_{k=p+1}^{2p} (n_{10p-5k+4} - n_{10p-5k+3}) \right) \\
+ \sum_{k=2p+1}^{3p} (n_{5k-10p-3} - n_{5k-10p-4}) + \sum_{k=3p+1}^{4p-j+1} (n_{20p-5k+5} - n_{20p-5k+4}) n_{5j-1} \\
- \sum_{j=1}^{p} \left(\sum_{k=1}^{p} (n_{5k-2} - n_{5k-3}) + \sum_{k=p+1}^{2p-j+1} (n_{10p-5k+4} - n_{10p-5k+3}) \right) n_{5j-2} \\
= \sum_{j=1}^{p} \left(\sum_{j'=j+1}^{p} (n_{5j'} - n_{5j'-4} + n_{5j}) \right) n_{5j-5}
\]
Thus, combining (2.9)–(2.16) implies that $b_1(n) + b_2(n)$ equals

\[
\begin{align*}
&\sum_{j=1}^{p} \left(\sum_{j'=1}^{j} (n_{5j'-1} - n_{5j'-4}) + \sum_{j'=j+1}^{p} (n_{5j'-1} - n_{5j'-3}) \right) n_{5j-4} \\
&+ \sum_{j=1}^{p} \left(\sum_{j'=1}^{j} (n_{5j'-2} - n_{5j'-3}) \right) n_{5j-3} \\
&- \sum_{j=1}^{p} \left(\sum_{j'=1}^{j} (n_{5j'-1} - n_{5j'-4}) + \sum_{j'=j}^{p} (n_{5j'} - n_{5j'-4}) \right) n_{5j-1} \\
&- \sum_{j=1}^{p} \left(\sum_{j'=1}^{j} (n_{5j'-2} - n_{5j'-3}) + \sum_{j'=j}^{p} (n_{5j'-1} - n_{5j'-3}) \right) n_{5j-2}.
\end{align*}
\]

(2.16)
3. Proof of Theorem 1.1

Proof of Theorem 1.1. Using Lemmas 2.2 and 2.3, one can check that for \(l = 4mp + 2p - 1 \) and \(t = 4mp - 1 \)

\[
a(n) = \sum_{j=1}^{p-1} n_{(2m+1)j} + \sum_{j=1}^{p} n_{(2m+1)j-(m+1)} + p - 1 \quad (3.1)
\]

and \(b_1(n) + b_2(n) \) equals

\[
1 - p + n_{(2m+1)p-1} + \sum_{j=1}^{p} \left(\sum_{i=1}^{m-1} n_{(2m+1)j-2m+i-1} - \sum_{i = m+1}^{2m} n_{(2m+1)j-2m+i-1} \right)
\]

\[
+ \sum_{j=1}^{m} \sum_{j'=1}^{j} \sum_{k=1}^{m} \sum_{k'=1}^{k} \left(n_{(2m+1)j-k} - n_{(2m+1)j-k-1} \right)
\]

\[
\times \left(n_{(2m+1)j'+k-2m-k'} - n_{(2m+1)j'+k-2m-k'-1} \right)
\]

\[
- \sum_{j=1}^{m} \sum_{j'=1}^{j} \sum_{k=1}^{m} \sum_{k'=1}^{k} \left(n_{(2m+1)j-m-k} - n_{(2m+1)j-m-k-1} \right)
\]

\[
\times \left(n_{(2m+1)j'-2m-k'} - n_{(2m+1)j'-2m-k'-1} \right)
\]

\[
+ \sum_{s=1}^{m} \sum_{j=1}^{p} \left(\sum_{j'=1}^{j-1} n_{(2m+1)j'-s} - n_{(2m+1)j'-2m+s-1} \right)
\]

\[
+ \sum_{j'=j}^{p} \left(n_{(2m+1)j'-s} - n_{(2m+1)j'-2m+s-2} \right) n_{(2m+1)j-2m+s-2}
\]

\[
- \sum_{j=1}^{p-1} \left(\sum_{j'=j+1}^{p} n_{(2m+1)j'-1} - n_{(2m+1)j'-(2m+1)} + n_{(2m+1)j} \right) n_{(2m+1)j-1}
\]

\[
- \sum_{s=1}^{m} \sum_{j=1}^{p} \left(\sum_{j'=1}^{j} n_{(2m+1)j'-m+s-1} - n_{(2m+1)j'-m-s} \right) \quad (3.2)
\]
\[
+ \sum_{j'=j+1}^{p} \left(n_{(2m+1)j'-m+s-2} - n_{(2m+1)j'-m-s} \right) \cdot n_{(2m+1)j-m+s-2}.
\]

Also, by (2.1) and (2.2), \(X(n) \) equals

\[
(-1)^{n_{(2m+1)p-1}} q^{-N_{n_{(2m+1)p-1}}} \cdot \frac{(q)_{N-1}(q)_{n_{(2m+1)p-1}}}{{(q)_{N-n_{(2m+1)p-1}}}}
\times \prod_{j=1}^{p} \frac{1}{2m} \prod_{s=1}^{(q)_{n_{(2m+1)j-2m+s-1}}} \cdot \frac{1}{q^{\frac{1}{2}}} \sum_{s=1}^{N} S(m,j,s)
\times \prod_{j=1}^{p} (-1)^{n_{(2m+1)j-2m-s-1}} \cdot \frac{1}{q^{n_{(2m+1)j-2m-s-2}}}
\]

where

\[
S(m,j,s) := \left(n_{(2m+1)j-2m+s-1} - n_{(2m+1)j-2m+s-2} \right)
\times \left(n_{(2m+1)j-2m+s-1} - n_{(2m+1)j-2m+s-2+1} \right). \quad (3.4)
\]

We first consider the case \(m = 1 \). Upon comparing (2.3) and (3.1)-(3.4) with (1.6) and then simplifying, it suffices to prove that

\[
\sum_{j=1}^{p} \sum_{j'=1}^{j} \left(n_{3j-1} - n_{3j-2} \right) \left(n_{3j'-2} - n_{3j'-3} \right)
\]

\[
- \sum_{j=1}^{p} \sum_{j'=1}^{j} \left(n_{3j-2} - n_{3j-3} \right) \left(n_{3j'-3} - n_{3j'-4} \right)
\]

\[
+ \sum_{j=1}^{p} \left(\sum_{j'=1}^{j-1} \left(n_{3j'-1} - n_{3j'-2} \right) + \sum_{j'=j}^{p} \left(n_{3j'-1} - n_{3j'-3} \right) \right) \cdot n_{3j-3}
\]

\[
- \sum_{j=1}^{p-1} \left(\sum_{j'=j+1}^{p} \left(n_{3j'-1} - n_{3j'-3} \right) + n_{3j} \right) \cdot n_{3j-1} - \sum_{j=1}^{p-1} \sum_{j'=1}^{j} \left(n_{3j'-1} - n_{3j'-2} \right) \cdot n_{3j-2}
\]

\[
- \sum_{j=1}^{p} n_{3j-2} n_{3j-3} \quad (3.5)
\]

equals
\[
\sum_{1 \leq i < j \leq 3p-1 \atop j \neq 1 \pmod{3}} \epsilon_{i,j,m} n_i n_j - \sum_{i=1}^{3p-2} n_i n_{i+1}
\] \hspace{1cm} (3.6)

where \(\epsilon_{i,j,m}\) is given by (1.4). Here, we have used the fact that

\[
- \sum_{j=1}^{p-1} n_{3j-1} = \sum_{i=1}^{p-1} \gamma_{i,1} t_i + \sum_{i=1}^{p-1} n_{3i},
\] \hspace{1cm} (3.7)

where \(\gamma_{i,m}\) is given by (1.5), together with the identities

\[
\frac{1}{2} \sum_{j=1}^{p} S(1,j,1) = \sum_{j=1}^{p} \left(\binom{n_{3j-3}}{2} - \binom{n_{3j-2} + 1}{2} \right) - n_{3j-2} n_{3j-3}
\] \hspace{1cm} (3.8)

where \(S(m,j,s)\) is given by (3.4) and

\[
\sum_{j=1}^{p} \binom{n_{3j-3}}{2} + \sum_{i=1}^{p-1} n_{3i} = \sum_{i=1}^{p-1} \binom{n_{3i} + 1}{2}.
\] \hspace{1cm} (3.9)

We now explain how to proceed from (3.5) to (3.6). After taking out the \(j' = j\) term from the fourth sum in the fourth line of (3.5) and simplifying, we obtain

\[
\sum_{j=1}^{p} \sum_{j'=1}^{j} n_{3j-1} n_{3j'-2} + \sum_{j=1}^{j-1} \sum_{j'=1}^{j} n_{3j'-1} n_{3j-3} - \sum_{j=1}^{p-1} \sum_{j'=1}^{j} n_{3j'-2} n_{3j-3}
\]

\[
- \sum_{j=1}^{p-1} \sum_{j'=j+1}^{p} n_{3j'-1} n_{3j-1} - \sum_{j=1}^{p} n_{3j} n_{3j-1} - \sum_{j=1}^{p} n_{3j-2} n_{3j-3} - \sum_{j=1}^{p} n_{3j-1} n_{3j-2}.
\] \hspace{1cm} (3.10)

The first line of (3.10) and the first sum in the second line of (3.10) correspond to the first sum in (3.6); namely, the first two sums correspond to \((i,j) \equiv (i,-i) \pmod{3}\) and \((i,j) \equiv (i,-i-1) \pmod{3}\), respectively, while the second two sums correspond to \((i,j) \equiv (i,i-1) \pmod{3}\) and \((i,j) \equiv (i,i) \pmod{3}\), respectively. The last three sums in the second line of (3.10) match the second sum of (3.6). Thus, we have proven that (3.5) equals (3.6).

We now turn to the general case \(m \geq 2\). Upon comparing (2.3) and (3.1)–(3.4) with (1.6) and then simplifying, it suffices to prove that

\[
\sum_{j=1}^{p} \sum_{j'=1}^{j} \sum_{k=1}^{m} \sum_{k'=1}^{k} \binom{n_{(2m+1)j-k}}{k-k'} - n_{(2m+1)j-k-1}
\]
\[\times (n(2m+1)j'-k-2m-k' - n(2m+1)j'-2m-k' - 1) \]
\[- \sum_{j=1}^{p} \sum_{j'=1}^{m-k+1} \sum_{k'=1}^{m-k+1} (n(2m+1)j'-m-k - n(2m+1)j'-m-k' - 1) \]
\[\times (n(2m+1)j'-2m-k' - n(2m+1)j'-2m-k' - 1) \]
\[+ \sum_{s=1}^{m} \sum_{j=1}^{p} \left(\sum_{j'=1}^{j-1} (n(2m+1)j'-s - n(2m+1)j'-2m+s-1) \right) n(2m+1)j - 2m + s - 2 \]
\[- \sum_{j=1}^{p-1} \left(\sum_{j'=j+1}^{p} (n(2m+1)j'-1 - n(2m+1)j'-(2m+1) + n(2m+1)j) n(2m+1)j - 1 \right) \]
\[- \sum_{s=1}^{m} \sum_{j=1}^{p} \left(\sum_{j'=1}^{j} (n(2m+1)j'-m+s-1 - n(2m+1)j'-m-s) \right) n(2m+1)j - m + s - 2 \]
\[+ \sum_{j=1}^{p} \left[\left(n(2m+1)j-2m+1 \right)^{2} - n(2m+1)j-2m n(2m+1)j-2m-1 + \left(n(2m+1)j-m-2 \right)^{2} \right] \]
\[- n(2m+1)j-m-1 n(2m+1)j-m-2 + \frac{1}{2} \sum_{s=2}^{m-1} S(m, j, s) \]
equal\[\sum_{1 \leq i < j \leq (2m+1)p-1} \epsilon_{i,j,m} n_{i} n_{j} - \sum_{i=1}^{n_{i} n_{i+1}} \sum_{i=1}^{(2m+1)p-2} n_{i} n_{i+1}. \]

Here, we have used the fact that
\[\sum_{j=1}^{p} \left(\sum_{i=1}^{m-1} n(2m+1)j-2m+i-1 - \sum_{i=m+1}^{2m-1} n(2m+1)j-2m+i-1 \right) - \sum_{j=1}^{p-1} n(2m+1)j-1 \]
\[= \sum_{i=1}^{(2m+1)p-2} \gamma_{i,m} n_{i} + \sum_{i=1}^{p-1} n(2m+1)i \]

together with the identities

\[(3.13) \]
12 \sum_{j=1}^{p} \sum_{s=1}^{m} S(m, j, s) \\
&= \sum_{j=1}^{p} \binom{n(2m+1)j-2m-1}{2} \left[\binom{n(2m+1)j-m-1+1}{2} \right. \\
&+ \left. \sum_{j=1}^{p} \binom{n(2m+1)j-2m+1}{2} - n(2m+1)j-2m \sum_{s=1}^{m} S(m, j, s) \right] \\
&+ \left(\binom{n(2m+1)j-m-2}{2} - n(2m+1)j-m-1 \right) n(2m+1)j-m-2 + \frac{1}{2} \sum_{s=2}^{m-1} S(m, j, s) \\
\text{(3.14)}

\text{and}

\sum_{j=1}^{p} \binom{n(2m+1)j-2m-1}{2} \left[\sum_{i=1}^{p-1} n(2m+1)i \right] = \sum_{i=1}^{p-1} \binom{n(2m+1)i+1}{2}. \text{ (3.15)}

We now sketch how to proceed from (3.11) to (3.12). For 1 \leq i \leq 11, let \(L_i\) denote the \(i\)th line of (3.11). First note that

\[L_{10} + L_{11} = \sum_{j=0}^{p} \sum_{i=1}^{m-1} n(2m+1)i + \sum_{j=0}^{m} \sum_{i=1}^{p-1} n(2m+1)i n(2m+1)i + 1. \text{ (3.16)} \]

Next, the sums over \(k'\) in both \(L_1\) and \(L_2\) and \(L_3\) and \(L_4\) telescope. Thus, we obtain that \(L_1\) and \(L_2\) equal

\[\sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \left(n(2m+1)j-k - n(2m+1)j-k-1 \right) n(2m+1)j'+k-2m-1 \\
- \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \left(n(2m+1)j-k - n(2m+1)j-k-1 \right) n(2m+1)j'-2m-1 \text{ (3.17)} \]

and \(L_3\) and \(L_4\) equal

\[- \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \left(n(2m+1)j-m-k - n(2m+1)j-m-k-1 \right) n(2m+1)j'-2m-1 \\
+ \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \left(n(2m+1)j-m-k - n(2m+1)j-m-k-1 \right) n(2m+1)j'-3m+k-2. \text{ (3.18)} \]
Now the sum over k in the second line of (3.17) and the first line of (3.18) both telescope and so L_1 and L_2 equal

$$
\sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=-1}^{j} n(2m+1)j-kn(2m+1)j'+k-2m-1
\quad - \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=-1}^{j} n(2m+1)j-k-1n(2m+1)j'+k-2m-1
\quad + \sum_{j=1}^{p} \sum_{j'=-1}^{j} n(2m+1)j-m-1n(2m+1)j'-2m-1
\quad - \sum_{j=1}^{p} \sum_{j'=-1}^{j} n(2m+1)j-1n(2m+1)j'-2m-1
\quad = 0
$$

(3.19)

and L_3 and L_4 equal

$$
\sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=-1}^{j} n(2m+1)j-m-kn(2m+1)j'-3m+k-2
\quad - \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=-1}^{j} n(2m+1)j-m-1n(2m+1)j'-3m+k-2
\quad + \sum_{j=1}^{p} \sum_{j'=-1}^{j} n(2m+1)j-2m-1n(2m+1)j'-2m-1
\quad - \sum_{j=1}^{p} \sum_{j'=-1}^{j} n(2m+1)j-2m-1n(2m+1)j'-2m-1
\quad = 0
$$

(3.20)

Observe that the third sum in (3.19) and the fourth sum in (3.20) cancel. Moreover, if we take $s = 1$ in the triple sum in L_6,

$$
\sum_{s=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{p} (n(2m+1)j'-s - n(2m+1)j'-2m+s-2)n(2m+1)j-2m+s-2
$$

(3.21)

and exchange j and j' we see that this cancels with the fourth sum in (3.19) and the third sum in (3.20). Putting this and (3.16) together and expanding all of the sums we find that (3.11) equals

$$
\sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=-1}^{j} n(2m+1)j-kn(2m+1)j'+k-2m-1
\quad - \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=-1}^{j} n(2m+1)j-k-1n(2m+1)j'+k-2m-1
\quad = 0
$$
\[\sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \eta^{(2m+1)j-m-k} \eta^{(2m+1)j'-3m+k-2} \]

\[- \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \eta^{(2m+1)j-m-k-1} \eta^{(2m+1)j'-3m+k-2} \]

\[+ \sum_{s=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \eta^{(2m+1)j'-s} \eta^{(2m+1)j-2m+s-2} \]

\[- \sum_{s=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \eta^{(2m+1)j'-2m+s-1} \eta^{(2m+1)j-2m+s-2} \]

\[+ \sum_{s=2}^{m} \sum_{j=1}^{p} \sum_{j'=j}^{j} \eta^{(2m+1)j'-s} \eta^{(2m+1)j-2m+s-2} \]

\[- \sum_{s=2}^{m} \sum_{j=1}^{p} \sum_{j'=j}^{j} \eta^{(2m+1)j'-2m+s-2} \eta^{(2m+1)j-2m+s-2} \]

\[- \sum_{j=1}^{p-1} \eta^{(2m+1)j} \eta^{(2m+1)j-1} \]

\[- \sum_{s=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \eta^{(2m+1)j'-m+s-1} \eta^{(2m+1)j-m+s-2} \]

\[+ \sum_{s=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \eta^{(2m+1)j'-m-s} \eta^{(2m+1)j-m+s-2} \]

\[- \sum_{s=1}^{m} \sum_{j=1}^{p} \sum_{j'=j+1}^{j} \eta^{(2m+1)j'-m-s-2} \eta^{(2m+1)j-m+s-2} \]

\[+ \sum_{s=1}^{m} \sum_{j=1}^{p} \sum_{j'=j+1}^{j} \eta^{(2m+1)j'-m-s} \eta^{(2m+1)j-m+s-2} \]

\[- \sum_{j=0}^{p-1} \sum_{i=1}^{m-1} \eta^{(2m+1)j+i} - \sum_{j=0}^{p-1} \sum_{i=1}^{m} \eta^{(2m+1)j+i} \eta^{(2m+1)j+i-1}. \]

(3.22)

In the sum on the eighth line of (3.22), we exchange \(j \) and \(j' \) and reindex to obtain
− \sum_{s=2}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j - 2m + s - 2n(2m+1)j' - 2m + s - 2.

We then take out the term \(j' = j \) and shift the indices in this term by \(j \rightarrow j + 1 \) and \(s \rightarrow s + 1 \) to cancel with the first sum on the last line of (3.22). In the third and fourth lines of (3.22), perform the shift \(j' \rightarrow j' + 1 \) and start the sum at \(j' = 1 \) (as \(j' = 0 \) gives 0) to obtain

\[
\sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j-1} n(2m+1)j - m - k n(2m+1)j' - m + k - 1
\]

\[
- \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j-1} n(2m+1)j - m - k n(2m+1)j' - m + k - 1.
\]

(3.23)

Now, in the sum of the penultimate line of (3.22), we exchange \(j \) and \(j' \) and reindex, shift by \(s \rightarrow s + 1 \), then remove the \(s = 0 \) term. Note that what remains cancels with the second sum in (3.23) after removing the \(k = m \) term. In total, this yields that (3.11) equals

\[
\sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j - k n(2m+1)j' + k - 2m - 1
\]

\[
- \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j - k - 1 n(2m+1)j' + k - 2m - 1
\]

\[
+ \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j-1} n(2m+1)j - m - k n(2m+1)j' - m + k - 1
\]

\[
- \sum_{j=1}^{p} \sum_{j'=1}^{j-1} n(2m+1)j - 2m - 1 n(2m+1)j' - 1
\]

\[
+ \sum_{s=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j-1} n(2m+1)j' - s n(2m+1)j - 2m + s - 2
\]

\[
- \sum_{s=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j-1} n(2m+1)j' - 2m + s - 1 n(2m+1)j - 2m + s - 2
\]

\[
+ \sum_{s=2}^{m} \sum_{j=1}^{p} \sum_{j'=j}^{j} n(2m+1)j' - s n(2m+1)j - 2m + s - 2
\]
\[
\begin{align*}
&\sum_{s=2}^{m} p \sum_{j=1}^{j-1} n(2m+1)j' - 2m + s - 2n(2m+1)j - 2m + s - 2 \\
&\sum_{j=1}^{p-1} p \sum_{j'=j+1}^{j} n(2m+1)j' - 1n(2m+1)j - 1 + \sum_{j=1}^{p-1} p \sum_{j'=j+1}^{j} n(2m+1)j' - (2m+1)n(2m+1)j - 1 \\
&\sum_{j=1}^{p-1} n(2m+1)j' n(2m+1)j - 1 \\
&\sum_{s=1}^{m} p \sum_{j=1}^{j} n(2m+1)j' - m + s - 1n(2m+1)j - m + s - 2 \\
&\sum_{s=1}^{m} p \sum_{j=1}^{j} n(2m+1)j' - m - s n(2m+1)j - m + s - 2 \\
&\sum_{s=1}^{m} p \sum_{j=1}^{j} n(2m+1)j' - m + s - 2n(2m+1)j - m + s - 2 \\
&\sum_{j=1}^{p} j - 1 \sum_{j'=j+1}^{j} n(2m+1)j' - m - 1n(2m+1)j' - m - 1 \\
&\sum_{j=0}^{p-1} \sum_{i=1}^{m} n(2m+1)j' + in(2m+1)j' + i - 1.
\end{align*}
\] (3.24)

We now simplify further. The \(s = 1 \) term of the sum in the thirteenth line cancels with the sum in the fourteenth line. Remove the \(j' = j \) term from the sum in the eleventh line and write it in the last line. The \(s = 1 \) term of the remaining triple sum cancels with the \(k = 1 \) term of the sum on the third line. The sum on the seventh line cancels with the sum of the second line once we remove the \(k = m \) term. This \(k = m \) term then cancels with the \(s = 1 \) term of the sum of the twelfth line. The first sum in the ninth line is the \(s = m + 1 \) term of the sum in the thirteenth line. The second sum in the ninth line cancels with the sum in the fourth line. Finally, the sum in the tenth line is the \(i = 0 \) term in the last line. Thus, (3.11) equals

\[
\sum_{k=1}^{m} p \sum_{j=1}^{j} n(2m+1)j' - k n(2m+1)j' + k - 2m - 1 \\
+ \sum_{k=2}^{m} p \sum_{j=1}^{j} n(2m+1)j' - m - k n(2m+1)j' - m + k - 1
\]
\[
\sum_{s=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j-1} n(2m+1)j'-sN(2m+1)j-2m+s-2 \\
+ \sum_{s=2}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j-1} n(2m+1)j'-sN(2m+1)j-m+s-2 \\
- \sum_{s=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j-1} n(2m+1)j'-2m+s-1N(2m+1)j-2m+s-2 \\
- \sum_{s=2}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j-1} n(2m+1)j'-2m+s-2N(2m+1)j-2m+s-2 \\
- \sum_{s=2}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j-1} n(2m+1)j'-m+s-1N(2m+1)j-m+s-2 \\
- \sum_{s=1}^{m} \sum_{j=1}^{p} \sum_{j'=j+1}^{p} n(2m+1)j'-m+s-1N(2m+1)j-m+s-1 \\
- \sum_{s=1}^{m} \sum_{j=1}^{p} n(2m+1)j-m+s-1N(2m+1)j-m+s-2 - \sum_{j=0}^{p-1} \sum_{i=0}^{m} n(2m+1)j+iN(2m+1)j+i-1. \\
\]

(3.25)

Now we see that this is equal to (3.12) as follows. The first eight lines of (3.25) correspond to the first term in (3.12); namely, the first and second lines of (3.25) correspond to \((i,j) \equiv (i,-i) \pmod{2m+1}\) while the third and fourth lines correspond to \((i,j) \equiv (i,-i-1) \pmod{2m+1}\). The sums in the fifth and seventh lines correspond to \((i,j) \equiv (i,i-1) \pmod{2m+1}\) while the sums in the sixth and eighth lines correspond to \((i,j) \equiv (i,i) \pmod{2m+1}\). Finally, the last line of (3.25) matches the second sum of (3.12). Thus, we have proven that (3.11) equals (3.12).

\[\square \]

4. Proof of Theorem 1.2

Proof of Theorem 1.2. As (1.9) reduces to (1.11) when \(m = 0\) and this case was proven in [16], we assume that \(m \geq 1\). Using Lemmas 2.4 and 2.5, one can check that for \(l = 4mp + 2p + 1\) and \(t = 4mp + 1\)

\[
a(n) = -\sum_{j=1}^{p-1} n(2m+1)j - \sum_{j=1}^{p} n(2m+1)j - (m) - p \quad (4.1)
\]

and \(b_1(n) + b_2(n)\) equals
Also, by (2.1) and (2.2), X suffices to prove that for m upon comparing (2.3) and (4.1)–(4.3) with (1.9) and then simplifying, it suffices to prove that for $m \geq 1$.
\[
\sum_{j=1}^{p} \sum_{j'=1}^{j} \sum_{k=1}^{m} \sum_{k'=1}^{k} (n_{2m+1}j-k+1 - n_{2m+1}j-k) \\
\times (n_{2m+1}j'+k-2m-k' - n_{2m+1}j'+k-2m-k'-1) \\
- \sum_{j=1}^{p} \sum_{j'=1}^{j} \sum_{k=1}^{m-k+1} \sum_{k'=1}^{m-k+1} (n_{2m+1}j-m-k+1 - n_{2m+1}j-m-k) \\
\times (n_{2m+1}j'-2m-k' - n_{2m+1}j'-2m-k'-1) \\
+ \sum_{s=1}^{m} \sum_{j=1}^{p} \left(\sum_{j'=1}^{j} (n_{2m+1}j'-s - n_{2m+1}j'-2m+s-1) \\
+ \sum_{j'=j+1}^{j+p} (n_{2m+1}j'-s - n_{2m+1}j'-2m+s) \right) n_{2m+1}j-2m+s-1 \\
+ \sum_{j=1}^{p} \left(\sum_{j'=j+1}^{j+p} (n_{2m+1}j'-n_{2m+1}j'-2m) + n_{2m+1}j \right) n_{2m+1}j-(2m+1) \\
- \sum_{s=1}^{m} \sum_{j=1}^{p} \left(\sum_{j'=1}^{j-1} (n_{2m+1}j'-s - n_{2m+1}j'-2m+s-1) \\
+ \sum_{j'=j}^{j+p} (n_{2m+1}j'-s+1 - n_{2m+1}j'-2m+s-1) \right) n_{2m+1}j-s \\
+ \sum_{j=1}^{p} \left[\left(n_{2m+1}j-2m+1 \right) - n_{2m+1}j-2m+n_{2m+1}j-2m-1 \\
+ \left(n_{2m+1}j-m-1 \right) - n_{2m+1}j-m+n_{2m+1}j-m-1 + \frac{1}{2} \sum_{s=2}^{m} S(m, j, s) \right] \\
\]

equals

\[
\sum_{1 \leq i < j \leq (2m+1)p} \sum_{(2m+1)|i}^{(2m+1)|j} \sum_{j \neq m+1 \pmod{2m+1}} \Delta_{i,j,m} n_i n_j \\
\]

where \(\Delta_{i,j,m} \) is given by (1.7). Here, we have used (3.15),

\[
\frac{1}{2} \sum_{j=1}^{p} \sum_{s=1}^{n+1} S(m, j, s)
\]
\[= \sum_{j=1}^{p} \left(\frac{n(2m+1)j-2m-1}{2} \right) + \left(\frac{n(2m+1)j-m+1}{2} \right) \]
\[+ \sum_{j=1}^{p} \left(\frac{n(2m+1)j-2m + 1}{2} \right) - n(2m+1)j-2m n(2m+1)j-2m-1 \]
\[+ \left(\frac{n(2m+1)j-m-1}{2} \right) - n(2m+1)j-m n(2m+1)j-m-1 + \frac{1}{2} \sum_{s=2}^{m} S(m, j, s) \]
\[(4.6)\]

and the fact that
\[\sum_{j=1}^{p} \left(\sum_{i=1}^{m} n(2m+1)j-2m+i-1 - \sum_{i=m+1}^{2m} n(2m+1)j-2m+i-1 \right) = \sum_{i=1}^{(2m+1)p-1} \beta_{i,m} n_i \]
\[(4.7)\]

where \(\beta_{i,m}\) is given by (1.8). We now sketch how to proceed from (4.4) to (4.5). For \(1 \leq i \leq 11\), let \(\hat{L}_i\) denote the \(i\)th line of (4.4). First, note that
\[\hat{L}_{10} + \hat{L}_{11} = \sum_{j=0}^{p-1} \sum_{i=1}^{m} n_{(2m+1)j+i}^2 - \sum_{j=0}^{p-1} \sum_{i=1}^{m} n(2m+1)j+i n(2m+1)j+i-1. \]
\[(4.8)\]

Next, the sums over \(k'\) in both \(\hat{L}_1\) and \(\hat{L}_2\) and \(\hat{L}_3\) telescope. Thus, we obtain that \(\hat{L}_1\) and \(\hat{L}_2\) equal
\[\sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \left(n(2m+1)j-k+1 - n(2m+1)j-k \right) n(2m+1)j'+k-2m-1 \]
\[\[4.9\]
\[= \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \left(n(2m+1)j-k+1 - n(2m+1)j-k \right) n(2m+1)j'-2m-1 \]
\[\]

and \(\hat{L}_3\) and \(\hat{L}_4\) equal
\[= \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \left(n(2m+1)j-m-k+1 - n(2m+1)j-m-k \right) n(2m+1)j'-2m-1 \]
\[+ \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} \left(n(2m+1)j-m-k+1 - n(2m+1)j-m-k \right) n(2m+1)j'-3m+k-2. \]
\[4.10\]

Now the sum over \(k\) in the second line of (4.9) and the first line of (4.10) both telescope and so \(\hat{L}_1\) and \(\hat{L}_2\) equal
\[
m \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j - k + 1 n(2m+1)j' + k - 2m - 1
\]

\[
- \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j - k n(2m+1)j' + k - 2m - 1
\]

\[
+ \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j - m n(2m+1)j' - 2m - 1 - \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j' n(2m+1)j' - 2m - 1
\]

and \(\hat{L}_3\) and \(\hat{L}_4\) equal

\[
m \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j - m - k + 1 n(2m+1)j' - 3m + k - 2
\]

\[
- \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j - m - k n(2m+1)j' - 3m + k - 2
\]

\[
+ \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j - 2m n(2m+1)j' - 2m - 1 - \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j' n(2m+1)j' - 2m - 1.
\]

Observe that the first sum in the third line of (4.11) cancels with the second sum in the third line of (4.12). Combine the remaining double sums, then remove the \(j' = j\) term to obtain cancellation with the double sum in \(\hat{L}_7\). The second sum in this \(j' = j\) term then cancels with the remaining sum in \(\hat{L}_7\). Next, the \(i = 1\) term of the second sum of (4.8) cancels with the first sum in this \(j' = j\) term. Putting this together and expanding sums, we now have that (4.4) equals

\[
m \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j - k + 1 n(2m+1)j' + k - 2m - 1
\]

\[
- \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j - k n(2m+1)j' + k - 2m - 1
\]

\[
+ \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j - m - k + 1 n(2m+1)j' - 3m + k - 2
\]

\[
- \sum_{k=1}^{m} \sum_{j=1}^{p} \sum_{j'=1}^{j} n(2m+1)j - m - k n(2m+1)j' - 3m + k - 2
\]
We combine the $j' = j$ term from the sum on the fifth line in (4.13) with the sum in the seventh line and then cancel with the sum in the second line. Next, the $j' = j$ term in the sum of the sixth line cancels with the first sum in the last line. Thus, (4.13) equals
\[\begin{align*}
&\sum_{m=1}^{p} \sum_{j=1}^{j-1} n(2m+1)j' - s n(2m+1)j - 2m + s - 1 \\
&\sum_{m=1}^{p} \sum_{j=1}^{j-1} n(2m+1)j' - 2m + s - 1 n(2m+1)j - 2m + s - 1 \\
&\sum_{s=1}^{p} \sum_{j=1}^{j-1} n(2m+1)j' - 2m + s n(2m+1)j - 2m + s - 1 \\
&\sum_{s=1}^{p} \sum_{j=1}^{j-1} n(2m+1)j' - s n(2m+1)j - s \\
&\sum_{s=1}^{p} \sum_{j=1}^{j-1} n(2m+1)j' - 2m + s n(2m+1)j - 2m - s + 1 \\
&\sum_{s=1}^{p} \sum_{j=1}^{j-1} n(2m+1)j' - s n(2m+1)j - s \\
&\sum_{s=1}^{p} \sum_{j=1}^{j-1} n(2m+1)j' - 2m + s - 1 n(2m+1)j - 2m + s - 1 \\
&\sum_{s=1}^{p} \sum_{j=1}^{j-1} n(2m+1)j' - 2m + s - 1 n(2m+1)j - s \\
&\sum_{j=0}^{p-1} \sum_{i=2}^{m+1} n(2m+1)j + i n(2m+1)j + i - 1.
\end{align*} \]

Now, the last line of (4.14) is the \(j' = j \) term of the sixth line. In the second and third lines, perform the shift \(j' \to j' + 1 \) and start the sum at \(j' = 1 \). The sum in the third line then cancels with the sum in the tenth line, except for the \(j' = j \) term. But this term now becomes the \(j' = j \) term for the sum in the eighth line. After simplifying and gathering terms, we have
Now we see that this is equal to (4.5) as follows. The first and second lines of (4.15) correspond to \((i, -i + 1) \pmod{2m + 1}\) while the third and fourth lines correspond to \((i, -i) \pmod{2m + 1}\). The sum in the fifth line and the first sum in the seventh line correspond to \((i, i) \pmod{2m + 1}\) while the sum in the sixth line and the second sum in the seventh line correspond to \((i, i + 1) \pmod{2m + 1}\). Thus, we have proven that (4.4) equals (4.5).

5. Proof of Theorem 1.3

Before proving Theorem 1.3, we briefly review the theory of Bailey pairs [3, 4]. Two sequences \((\alpha_n, \beta_n)\) are said to form a Bailey pair relative to \(a\) if

\[
\beta_n = \sum_{k=0}^{n} \frac{\alpha_k}{(q)_{n-k} (aq)_{n+k}}.
\]

The Bailey lemma says that if \((\alpha_n, \beta_n)\) form a Bailey pair relative to \(a\), then so do \((\alpha'_n, \beta'_n)\), where

\[
\alpha'_n = \frac{(\rho_1)_n (\rho_2)_n (aq/\rho_1 \rho_2)^n}{(aq/\rho_1)_n (aq/\rho_2)_n} \alpha_n \tag{5.2}
\]

and

\[
\beta'_n = \sum_{k=0}^{n} \frac{(\rho_1)_k (\rho_2)_k (aq/\rho_1 \rho_2)_{n-k} (aq/\rho_1 \rho_2)^k}{(aq/\rho_1)_n (aq/\rho_2)_n (q)_{n-k}} \beta_k. \tag{5.3}
\]

Iterating (5.2) and (5.3) gives what is called the Bailey chain.

We shall not require the full power of the Bailey chain, but only two special cases. First, take the Bailey pair relative to \(q\) [27, p.468, B(3)],

\[
\alpha_n = \frac{(-1)^n q^{n(3n+1)/2} (1 - q^{2n+1})}{1 - q} \tag{5.4}
\]

and

\[
\beta_n = \frac{1}{(q)_n}. \tag{5.5}
\]
Iterating (5.4) and (5.5) using (5.2) and (5.3) with \(\rho_1, \rho_2 \to \infty \) at each step, we find that \((\alpha_n^{(p)}, \beta_n^{(p)})\) is a Bailey pair relative to \(q\), where

\[
\alpha_n^{(p)} = \frac{(-1)^n q^{n(n-1)/2+p(n^2+n)}(1-q^{2n+1})}{1-q} \tag{5.6}
\]

and

\[
\beta_n^{(p)} = \frac{1}{(q)_n} \sum_{n=p \geq n_{p-1} \geq \cdots \geq n_1 \geq 0} \prod_{j=1}^{p-1} q^{n_j^2+n_j} \left[\frac{n_{j+1}}{n_j} \right]. \tag{5.7}
\]

Next take the Bailey pair relative to \(q\) [33, Eq. (4.12)],

\[
\alpha_n = \frac{q^{n^2}(1-q^{2n+1})}{1-q} \tag{5.8}
\]

and

\[
\beta_n = \frac{1}{(q)_n}. \tag{5.9}
\]

Performing the same iteration as above to (5.8) and (5.9), we find that \((\alpha_n^{(p)}, \beta_n^{(p)})\) is a Bailey pair relative to \(q\), where

\[
\alpha_n^{(p)} = \frac{q^{pn^2+(p-1)n}(1-q^{2n+1})}{1-q} \tag{5.10}
\]

and

\[
\beta_n^{(p)} = \frac{1}{(q)_n} \sum_{n=p \geq n_{p-1} \geq \cdots \geq n_1 \geq 0} \frac{1}{(q)_n} \prod_{j=1}^{p-1} q^{n_j^2+n_j} \left[\frac{n_{j+1}}{n_j} \right]. \tag{5.11}
\]

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. We began by recalling a formula of Walsh [32, Cor 4.2.4, corrected]. Namely, for \(m \geq 1\) and \(p \neq 0\), we have

\[
J_N(K_{(m,p)}; a^2) = a^{2p(1-N^2)} \sum_{n=0}^{N-1} \frac{[N+n]!}{[N-n-1]![2n+1]!} c_{n,p}^{(p)} (-1)^n \{2n+1\}! \{n\}! \{1\}(a-a^{-1})^{2n} \\
\times \sum_{k=0}^{n} \frac{[2k+1]}{[n+k+1]![n-k]! \mu_{2k}} \mu_{2k}, \tag{5.12}
\]

where

\[
\mu_{2i} = a^{\frac{1+2i}{2}}, \quad \{n\} = a^n - a^{-n}, \quad [n] = \frac{a^n - a^{-n}}{a - a^{-1}},
\]

\[
\{n\}! = \{n\}\{n-1\} \cdots \{1\}, \quad [n]! = [n][n-1] \cdots [1]
\]

and

\[
c_{n,p}^{(p)} = \frac{1}{(a-a^{-1})^{2n}} \sum_{k=0}^{n} (-1)^k \mu_{2k}^{(p)} [2k+1] \frac{[n]!}{[n+k+1]![n-k]!}. \]
We note that the prefactor $a^{2p(1-N^2)}$ and the normalization factor $\frac{1}{[N]}$ are both missing in [32].

Some routine (but tedious) simplification shows that (5.12) can be written as

$$J_N(K_{(m,p)}; q) = q^{p(1-N^2)} \sum_{n \geq 0} q^n (q^{1+N})_n (q^{1-N})_n c_{p,n}(q) d_{m,n}(q),$$

(5.13)

where

$$c_{p,n}(q) = (q)_n \sum_{k=0}^n \frac{(-1)^k q^{(k^2+1) + p(k^2+k)} (1 - q^{2k+1})}{(q)^n (q)^{n+k+1}}$$

(5.14)

and

$$d_{m,n}(q) = (q)_n \sum_{k=0}^n \frac{q^{nk^2+(m-1)k} (1 - q^{2k+1})}{(q)^n (q)^{n+k+1}}.$$

(5.15)

Here, we have used that $a^2 = q$. Now, recalling (5.1) and comparing (5.14) to (5.6) and (5.7), we have that for $p > 0$,

$$c_{p,n}(q) = \sum_{n=n_p \geq n_{p-1} \geq \ldots \geq n_1 \geq 0} \prod_{j=1}^{p-1} q^{n_j^2 + n_j} \left[\begin{array}{c} n_j+1 \\ n_j \end{array} \right].$$

(5.16)

Similarly, comparing (5.15) to (5.10) and (5.11), we have that for $m > 0$,

$$d_{m,n}(q) = \sum_{n=n_m \geq n_{m-1} \geq \ldots \geq n_1 \geq 0} \prod_{j=1}^{m-1} q^{n_j^2 + n_j} \left[\begin{array}{c} n_j+1 \\ n_j \end{array} \right].$$

(5.17)

Inserting (5.16) and (5.17) in (5.13) gives (1.13).

For the case $p < 0$, a calculation using the fact that $(1/q; 1/q)_n = (q)_n (-1)^n q^{-(n+1)/2}$ shows that

$$c_{p,n}(1/q) = (-1)^n q^{n(n+3)/2} c_{-p,n}(q).$$

(5.18)

Using (5.18) together with the fact that

$$\left[\begin{array}{c} n \\ k \end{array} \right]_{1/q} = q^{k^2-nk} \left[\begin{array}{c} n \\ k \end{array} \right]_q$$

gives that for $p > 0$,

$$c_{-p,n}(q) = (-1)^n q^{-n(n+3)/2} \sum_{n=n_p \geq n_{p-1} \geq \ldots \geq n_1 \geq 0} \prod_{j=1}^{p-1} q^{-n_j-n_{j+1}+n_j} \left[\begin{array}{c} n_j+1 \\ n_j \end{array} \right].$$

(5.19)

Inserting (5.19) and (5.15) in (5.13) gives (1.14), which completes the proof. □

We thank Katherine Walsh Hall for providing us with the corrected version.

^2We thank Katherine Walsh Hall for providing us with the corrected version.
6. Concluding remarks

Recall that Habiro [15] showed that for a knot K, the colored Jones polynomial has a cyclotomic expansion of the form

$$J_N(K; q) = \sum_{n\geq 0} (q^{1+N})_n (q^{1-N})_n C_n(K; q),$$

(6.1)

where the cyclotomic coefficients $C_n(K; q)$ are Laurent polynomials independent of N. The formulas in (1.13) and (1.14) for $J_N(K_{(m,p)}; q)$ and $J_N(K_{(m,-p)}; q)$ closely resemble the expansion in (6.1), but the coefficients are neither polynomials nor independent of N. It would be highly desirable to find the correct cyclotomic expansions for these knots. We note that this has already been done by Hikami and the first author in the case of the left-handed torus knots $K_{(1, -p)}$, where we have [20, Prop. 3.2]

$$C_n(K_{(1, -p)}; q) = q^{n+1-p} \sum_{n+1=k_p \geq k_{p-1} \geq \cdots \geq k_1 \geq 1} \prod_{i=1}^{t-1} q^{k_i^2} \left[\frac{k_{i+1} + k_i - i + 2 \sum_{j=1}^{i-1} k_j}{k_{i+1} - k_i} \right].$$

(6.2)

Another topic for future study would be to generalize facts about the Kontsevich-Zagier series (1.1) to the generalized Kontsevich-Zagier series $F_{m,p}(q)$ (and/or for $S_{m,p}(q)$). First, given the relation to the colored Jones polynomial in (1.17), we conjecture that the $F_{m,p}(q)$ are quantum modular forms. Second, as the coefficients of $F(1-q)$ enjoy a wide variety of combinatorial interpretations (see A022493 in [28]) and interesting congruence properties [1, 2, 5, 11, 12, 29], it would be of great interest to determine if the same is true for $F_{m,p}(1-q)$.

Finally, can one prove Theorems 1.1 and 1.2 using difference equations? This approach was used in [16, 17] to compute (1.11).

Acknowledgements

The authors would like to thank Paul Beirne and Katherine Walsh Hall for their helpful comments and suggestions. The second author would like to thank the Max-Planck-Institut für Mathematik for their support during the completion of this paper.

References

