We consider pinched unimodal quasiperiodically forced maps, that is, skew products with irrational rotations of the circle in the base and unimodal interval maps in the fibers. This case is similar to the one considered by Gerhard Keller, except that, in his case, the function in the fibers is increasing.

We prove that under some additional assumptions on the system there exists a “strange nonchaotic attractor”. It is the graph of a measurable function from the circle to a closed interval of the real line which is invariant, discontinuous almost everywhere and attracts almost all trajectories. Moreover, both Lyapunov exponents on this attractor are nonpositive. There are also cases when the dynamics is completely different, because one can apply the results of Jerome Buzzi implying the existence of an invariant measure absolutely continuous with respect to the Lebesgue measure (and then the attractor is some region in the cylinder), and the maximal Lyapunov exponent is positive. Finally, there are cases in which we can only guess what the behavior is by performing computer experiments. This is a work in collaboration with M. Misurewicz.